International Journal of Collaborative Research on Internal Medicine & Public Health

ISSN - 1840-4529

Elena Johnson

Editorial Office, Journal of Public Health, UK


  • Mini Review   
    With Diabetes in Mind: A Thiol Signaling Network
    Author(s): Elena Johnson*

    The redox regulation system is in charge of maintaining normal cellular activities. Similar to the phosphorylation cascade, controlled variations in redox couples potential act as signal transduction components. The thermodynamic disequilibrium of the primary redox switches allows rapid and sensitive reactions to changes in redox environments, therefore cellular redox biology necessitates both compartmentalization and communication of redox systems. Numerous sulphur species with distinct functional groups (thiols, disulphides, polysulphides, sulphenic, sulphinic, and sulphonic acids, etc.) participate in a sophisticated network of sulphur-based redox processes, resulting in the multiple oxidation states of sulphur. Increased generation of reactive oxygen species and disruptions of thiol redox homeostasis have been linked to human diseases such as diabetes mellitus and its cardiovascul.. View More»
    DOI: 10.35248/1840-4529.

    Abstract HTML PDF