GET THE APP

Health Economics & Outcome Research: Open Access

ISSN - 2471-268X

Nmr Applications

Nuclear magnetic resonance (NMR) is a method of physical observation in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field and therefore not involving electromagnetic waves) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics, crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI). A key feature of NMR is that the resonance frequency of a particular sample substance is usually directly proportional to the strength of the applied magnetic field. It is this feature that is exploited in imaging techniques; if a sample is placed in a non-uniform magnetic field then the resonance frequencies of the sample's nuclei depend on where in the field they are located. Since the resolution of the imaging technique depends on the magnitude of the magnetic field gradient, many efforts are made to develop increased gradient field strength. The two magnetic fields are usually chosen to be perpendicular to each other as this maximizes the NMR signal strength. The frequencies of the time-signal response by the total magnetization (M) of the nuclear spins are analyzed in NMR spectroscopy and magnetic resonance imaging. Both use applied magnetic fields (B0) of great strength, often produced by large currents in superconducting coils, in order to achieve dispersion of response frequencies and of very high homogeneity and stability in order to deliver spectral resolution, the details of which are described by chemical shifts, the Zeeman effect, and Knight shifts (in metals). The information provided by NMR can also be increased using hyperpolarization, and/or using two-dimensional, three-dimensional and higher-dimensional techniques. Today, NMR has become a sophisticated and powerful analytical technology that has found a variety of applications in many disciplines of scientific research, medicine, and various industries. Modern NMR spectroscopy has been emphasizing the application in biomolecular systems and plays an important role in structural biology. With developments in both methodology and instrumentation in the past two decades, NMR has become one of the most powerful and versatile spectroscopic techniques for the analysis of biomacromolecules, allowing characterization of biomacromolecules and their complexes up to 100 kDa. Together with X-ray crystallography, NMR spectroscopy is one of the two leading technologies for the structure determination of biomacromolecules at atomic resolution. In addition, NMR provides unique and important molecular motional and interaction profiles containing pivotal information on protein function.

Relevant Topics in Nursing & Health Care

Top