Cancer therapies are currently limited to surgery, radiation, and chemotherapy. All three methods risk damage to normal tissues or incomplete eradication of the cancer. Nanotechnology offers the means to target chemotherapies directly and selectively to cancerous cells and neoplasms, guide in surgical resection of tumours, and enhance the therapeutic efficacy of radiation-based and other current treatment modalities. All of this can add up to a decreased risk to the patient and an increased probability of survival. Research on nanotechnology cancer therapy extends beyond drug delivery into the creation of new therapeutics available only through use of nanomaterial properties. Although small compared to cells, nanoparticles are large enough to encapsulate many small molecule compounds, which can be of multiple types. At the same time, the relatively large surface area of nanoparticle can be functionalized with ligands, including small molecules, DNA or RNA.