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Abstract
We examined the localization and chemical nature of neurons immunoreactive to noradrenaline (NA) in the cat’s 

dorsal vagal complex (DVC), using immunohistochemistry for NA, dopamine-β-hydroxylase (DBH), dopamine (DA) 
and tyrosine hydroxylase, under different conditions. In non-treated animals, localization of NA-immunoreactive (-ir) 
and DBH-ir neurons extensively overlapped. They were found mainly in the caudal portion of the nucleus of the solitary 
tract (NTS), and a small number in the dorsal motor nucleus of the vagus. Most were restricted to the commissural and 
ventral sub nuclei of the NTS. In the area postrema, we observed a small number of weakly stained NA-ir cell bodies 
alongside numerous intensely stained DBH-ir ones. Injection of the monoamine oxidase inhibitor (MAOI), pargyline, 
enhanced NA immunoreactivity in cells and axons of the DVC and increased their number. Treatment with MAOI 
plus parachlorophenylalanine, an inhibitor of tryptophan and phenylalanine hydroxylases, dramatically decreased 
both DA and NA immunoreactivities in a large number of axons, although NA immunoreactivity in cell bodies of the 
DVC remained visible. Treatment with Colchicine+MAOI intensified NA immunoreactivity exclusively in cell bodies in 
areas described above and where immunoreactivity to NA and DBH was weak and/or undetectable. The physiological 
implications were discussed referring to the previous reports.

Keywords: Dopamine; Nucleus of the solitary tract; Dorsal motor
nucleus of the vagus; Noradrenaline; Dopamine-β-hydroxylase 

Abbreviations: 5-HT: 5-Hydroxytryptamine; 5MT: Tract Of The
Mesencephalic Trigeminal Nucleus; 5SP: Spinal Trigeminal Nucleus; 
6-OHDA: 6-Hydroxydopamine; 12N: Hypoglossal Nucleus; A1-
A14, A1-A14 Catecholaminergic Cell Groups; AADC: Aromatic
L-Aminoacid Decarboxylase; Ach: Acetylcholine; AP: Area Postrema;
BC: Brachium Comjunctivum; C1-C2: C1-C2 Adrenergic Cell Groups;
CA: Catecholamines; CC: Central Canal; COL: Colchicine; COM:
Commissural Nucleus Of Cajal; DA: Dopamine; DBH: Dopamine-Β-
Hydroxylase; DMV: Dorsal Motor Nucleus Of The Vagus; DOPAC:
3,4-Dihydroxyphenylacetic Acid; DR: Dorsal Raphe Nucleus; DS:
Dorsal Strip; DVC: Dorsal Vagal Complex; FTL: Lateral Tegmental Field; 
FTP: Pontine Tegmental Field; G: Glutaraldehyde; IO: Inferior Olive;
ISC: Interstitiospinal Tract; LC: Locus Coeruleus Nucleus; L-DOPA:
L-3,4-Dihydroxyphenylalanine; LRN: Lateral Reticular Nucleus; LSC:
Locus Subcoeruleus; MAO: Monoamine Oxidase; MAOI: Monoamine
Oxidase Inhibitor (Pargyline); Mnts: Medial Nucleus Of The Solitary
Tract; NA: Noradrenlaine; NAT: Noradrenaline Transporter; PBL:
Lateral Parabrachial Nucleus; PBM: Medial Parabrachial Nucleus;
PCPA: DL-Parachlorophenylalanie; PD: Pyramidal Decussation;
PEH: Periventricular Complex Of The Hypothalamus; PGO:
Ponto-Geniculo-Occipital; PNMT: Phenylethanolamine N-Methyl
Transferease; PY: Pyramidal Tract; PD: Pyramidal Decussation; REM:
Rapid Eye Movements; RO: Raphe Obscurus Nucleus; RP: Raphe
Pallidus Nucleus; SG: Substantia Gelatinosus; SN: Substantia Nigra; ST: 
Solitary Tract; SUB: Subpostrema Division Of The NTS; TH: Tyrosine
Hydroxylase; VLM: Ventrolateral Meulla; VTA: Ventral Tegmental
Area Of Tsai; VTB: Ventral Tegmental Bundle

Introduction
Lying in the dorsomedial medulla oblongata and consisting of 

the nucleus of the solitary tract (NTS), dorsal motor nucleus of the 
vagus (DMV), and area postrema (AP), the dorsal vagal complex 
(DVC) has a known involvement in autonomic functions such as 
cardiovascular, respiratory and visceral regulation. The DVC and 
ventrolateral medulla (VLM) play a major role in the central control of 
the cardiorespiratory and other parts of the autonomic nervous system. 
The NTS receives a variety of neurovegetative inputs from peripheral 
receptors and is crucially involved in integrating the information arising 
from the bronchopulmonary and arterial baro- or chemoreceptors. 
Arising from airways and chemosensory fibers in the chemoreceptors 
of the peripheral artery, these fibers project to the caudomedial NTS in 
the commissural nucleus (COM) close to the central canal [1,2].

 Structures of the DVC contain noradrenaline (NA) [3], as well as 
their synthesizing enzymes; tyrosine hydroxylase (TH) necessary for 
the production of L-dihydroxyphenylalanine (L-DOPA) from plasma 
L-tyrosine, aromatic L-amino acid decarboxylase (AADC) to convert
L-DOPA to dopamine (DA), dopamine-β-hydroxylase (DBH) to
catalyze the transformation of DA to NA. In fact, many neurons and
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axons in the DVC show immunoreactivity to TH, AADC or DBH [4-9], 
and some contain all three enzymes. In addition, the DVC also contains 
the NA transporter (NAT), taking up NA into the presynaptic terminals 
once released into the synaptic cleft [10], and type A monoamine 
oxidase (MAO-A), a degrading enzyme which oxidizes NA and 
inactivates it [8].

We have previously described the distribution of DBH-ir cells in the 
human medulla oblongata using anti-human DBH [9]. In the human, 
DBH-ir cells could be seen caudally in the COM and medial subnucleus 
of the NTS (mNTS), and extending more rostrally in the DVC beyond 
the AP. In the cat, we found some intensely labeled cells intermingled 
with many weakly stained ones, more restricted to the caudal portion 
of the DVC, such as the COM, mNTS and ventral periphery of the 
DMV from levels P17 to P13 of the Horsley Clarke stereotaxic plane 
[6]. A study in the rat reported that some cells in the rostral part 
contained phenylethanolamine N-mthyltransferease (PNMT) and were 
seemingly adrenergic, and thus named the C2 cell group [11]. However, 
many cells in the caudal portion show no immunoreactivity to PNMT 
[5,12,13], and thus were considered noradrenergic. Similar evidence for 
this has been confirmed in the cat, sheep and human [6,14-18] equally 
predicting the presence of NA, though no direct evidence has been 
provided.

Earlier studies reported the presence of catecholamine (CA) 
fluorescence in the DVC of the rat [19-21] and cat [22-25]. These 
fluorescent cells and axons were believed to be noradrenergic, with 
some dopaminergic components. These reports described very briefly 
the distribution of these dorsomedial medullary CA cell bodies and 
axons, probably due to their weak fluorescence which disappears 
rapidly by ultraviolet emission.

Nowadays, NA immunohistochemistry allows the detection of NA 
immunoreactivity in cell bodies and terminals in glutaraldehyde-fixed 
cerebral tissue [26,27]. Several previous studies reported the presence 
of this amine in the rat [28], monkey [29], and in the lower vertebrates 
[30,31].

Here we examine the neuronal structures showing NA 
immunoreactivity in the cat DVC by immunohistochemistry using an 
anti-NA antiserum in comparison with DBH and, if necessary, DA and 
TH immunoreactivities in the cat. We also examine variations in NA 
concentration following individual treatments with saline, monoamine 
oxidase inhibitor (MAOI), parachlorophenylalanine (PCPA, inhibitor 
of 5-HTP and L-tyrosine syntheses to decrease cerebral monoamines) 
[32], and colchicine. We use MAOI to increase NA concentration 
by preventing degradation of NA in cells and axons, and colchicine 
to accumulate NA in cell bodies by blocking the removal of NA 
from cell bodies to axons via anterograde axonal transport [33]. The 
administration of MAOI and/or combined treatment with colchicine 
(colchicine+MAOI) ensured the detection of as many cells and axons 
showing NA immunoreactivity as possible. 

Materials and Methods
Procedures involving animals and their care were conducted in 

accordance with national and international law and policy guidelines 
(French Decree No.87848). A minimum number of animals were used 
to achieve this study, and special attention was given to minimize 
animal suffering. 

Tissue preparation for NA and DA immunohistochemistry 

Seventeen cats weighing 3-5 kg were used in this study. They were 
divided into five groups: animals were untreated (n=2) or treated 

intraperitoneally (i.p.) with saline (n=3); treated with an inhibitor of 
MAO (10 mg/kg of Pargyline i.p., Sigma) (n=4) 2 h before sacrifice. Four 
cats were treated with parachlorophenylalanine (PCPA, 400 mg/kg, i.p., 
Sigma), and in 4 cats, colchicine treatment was performed under deep 
sodium pentobarbital anesthesia (25 mg/kg, i.v.) by intraventricular 
injection of 200 μg of colchicine (Sigma) in saline vehicle (20 μl) over 30 
min. Animals treated with PCPA and those with colchicine were kept 
for 46 hours in their cage and received MAOI injection (10 mg/kg of 
Pargyline i.p., Sigma) 2 h before sacrifice. Animals were anesthetized 
by intravenous injection with a lethal dose of sodium pentobarbital 
(more than 40 mg/kg), and perfused through the ascending aorta with 
1 liter of 0.01M phosphate-buffered saline (PBS, pH 7.4) followed by 1 
liter of fixative containing 2% glutaraldehyde, 1% sodium metabisulfite, 
and 0.25% picric acid in 0.1 M PB (pH 7.4). Brains were removed and 
cut into several 5mm-thick blocks. Tissue blocks were postfixed in the 
same fixative for 8 hours, and rinsed for 3 days in PBS containing 15% 
sucrose and 1% sodium metabisulfite. Brain sections were then cut in 
coronal planes using a cryostat (25 μm) under the same conditions. 
Sections of brain tissue from differently treated animals were reduced 
by sodium borohydrate, thoroughly washed and stocked in PBS with 
1% sodium metabisulfite and sodium azide. 

Tissue preparation for DBH and TH immunohistochemistry 

For DBH- and TH-immunohistochemistry, 15 animals weighing 
3-5 kg were used. They were divided into three groups: animals were 
untreated (n=2) or treated intraperitoneally (i.p.) with saline (n=3). Five 
cats were treated with parachlorophenylalanine (PCPA, 400 mg/kg, i.p., 
Sigma), and in 5 cats, colchicine treatment was performed under deep 
sodium pentobarbital anesthesia (25 mg/kg, i.v.) by intraventricular 
injection of 200 μg of colchicine (Sigma) in saline vehicle (20 μl) over 30 
min. Animals treated with PCPA and those with colchicine were kept 
for 48 hours in their cage before sacrifice. 

Animals were anesthetized by intravenous injection with a lethal 
dose of sodium pentobarbital (more than 40 mg/kg), and perfused 
through the aorta with 1 liter of saline, followed by 1.5 liter of 0.1M 
phosphate buffer (PB) containing 4% paraformaldehyde (pH 7.4). The 
brains were removed and post fixed in the same fixative. 

Brain sections were then cut in coronal planes using a cryostat (25 
μm) under the same conditions. Sections of brain tissue from differently 
treated animals were stocked in PBS with sodium azide. 

Immunohistochemical staining 

Brain sections fixed with glutaraldehyde were incubated with a 
polyclonal primary antibody directed against NA, or directed against 
DA [26,27,34], diluted 1:30,000 in PBS containing 0.3% Triton X-100 at 
4°C for 48 hours. Those fixed with paraformaldehyde (or if necessary, 
with glutaraldehyde) were incubated with a polyclonal primary 
antibody directed against either DBH [18] or TH [35], diluted 1:30,000 
in PBS containing 0.3% Triton X-100 at 4°C for 48 hours. These 
were thoroughly washed in PBS and incubated in biotinylated rabbit 
or mouse IgG (Vector Laboratory, 1:1,000) for 12 h at 4°C, and after 
several rinses with PBS, finally incubated in avidin-biotin-peroxidase 
complex (Vector Laboratory, 1:1,000) for 1 h at room temperature. 
Peroxidase activity was then revealed, for 10 minutes, in 50 mM Tris-
HCl buffer (pH 7.6) containing 0.0003% H2O2, 0.01% 3,3’-diamino-
benzidine-4HCl (DAB) and 1% nickel ammonium sulfate. The reaction 
was terminated by washes in a Tris saline rinse. Sections were floated 
onto Tris solution on slides coated with 0.1% chromogelatin. Mounted 
sections were dehydrated and cover slipped using Depex. Sections 
were traced on a camera lucida to accurately locate DA-ir structures. 
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substantia nigra (SN) cells in non-treated animals. However, following 
injection of MAOI, this anti-NA antibody stained very weakly SN 
and ventral tegmental area (VTA) cell bodies (Figure 1D) showing 
very intense DA immunoreactivity (Figure 1E). We observed no NA 
immunostaining (Figure 1F) in hypothalamic cells showing strong 
DA immunoreactivity (Figure 1G) even after MAOI treatment. DA 
immunoreactivity in the DVC was very weak in non-treated and 
slightly less weak in MAOI-treated animals (Figure 1H), whereas we 
found intense NA immunoreactivity in this same structure (Figures 1K, 
and cf.3E). Anti-NA distinctly stained NA-ir cells even after a dramatic 
decrease in DA concentration in this region by parachlorophenylalanine 
(PCPA) administration (cf. Figuer.4). The anti-DA antibody stained no 
AP cells which showed strong NA immunoreactivity after treatment 
with colchicine and MAOI (cf. Figure 5A, C). In all, the present anti-
NA antibody did not recognize DA immunoreactivity in the DVC of 
non-, MAOI-, or PCPA+MAOI- treated animals; nor did the anti-DA 
recognize NA immunoreactivity.

Topographical distribution 

Medullary A1 and A2 cell groups were also distinctly labeled. 
Figures 1I to 1O present photomicrographs in lower magnification of the 
sections of the medulla oblongata, stained by anti-NA in MAOI-treated 
animals, in caudorostral order from P17 to P10.5 of Horsley-Clark 
stereotaxic planes [37] for a better comprehension of topographical 
NA-ir structures. We observed the densest labeling restricted to the 
DVC, including the NTS, DMV and the AP. Ventrolaterally, NA-ir cell 
bodies (belonging to the A1 cell group) were dispersed and sometimes 
aggregated in the lateral tegmental field (FTL) as shown in the inset of 
Figure 1L. 

We observed dense networks of the NA-ir fibers in the hypoglossal, 
raphe pallidus nuclei and the inferior olive, as well as thick varicose 
axons in the ventral tegmental bundle (VTB) running through the 
dorsal medullary tegmentum. In all parts of the medulla oblongata 
we saw an uneven distribution of many fine varicose fibers, but not 
in the major myelinated axon bundles such as the pyramidal and 
spinocerebellar tracts.

NA versus DBH immunoreactivity in non-treated animals 
(Figure 2)

We observed a small number of NA-ir cell bodies, oval or fusiform 
in shape and 8x9 – 10x15 μm in size located caudally at the P17 level 
(Figure 2A). These were distributed in a similar manner to DBH-ir cell 
bodies (Figure 2B) in the medial NTS (mNTS) extending medially to 
the solitary tract (ST) and also in the DMV. At the same level, we also 
saw moderately dense NA-ir fibers in this region (indicated in a square) 
and in the commissural nucleus of Cajal (COM, subnucleus of the NTS) 
where they were few in number, though loosely aggregated around the 
central canal in a more caudal portion (not shown). 

Slightly rostrally at the P13 level and as presented in Figure 2C, 
although observing numerous NA-ir varicose fibers in the medial portion 
of the mNTS (see also Figure 2E) and the ventrolateral periphery of the 
DMV (Figure 2G), we found only a few small-sized oval or fusiform-
shaped NA-ir cell bodies (8x10-10x20 μm) in the ventrolateral and 
lateral portions of the mNTS, and occasional medium-sized ones in the 
lateral mNTS (Figure 2F) and ventral periphery of the DMV. In contrast 
and as shown in Figure 2D, small to medium-sized DBH-ir neurons, 
morphologically similar to NA-ir ones, were extensively distributed in 
the dorsal mNTS, the subpostrema region (SUB) ventral to the AP (also 
Figure 2I), the center of the mNTS and the ventral periphery of the 

Details of the production, characterization, and specificity of NA and 
DA antibodies have been described elsewhere [23,24], and are briefly 
summarized below. 

Prior to immunization NA or DA was linked via glutaraldehyde 
(G) to polypeptide carrier molecules such as bovine serum albumin 
(BSA). After coupling, the double bonds were saturated using sodium 
borohydride, and the resulting immunogens were purified. Rabbits 
were immunized by injection of the BSA-conjugate. The amino group 
of lysine from N-alpha-acetyl-L-Lysine N-methylamine (ALM) which 
mimics the lysine residue locations in the polypeptides was linked via 
glutaraldehyde to the amino group of NA. 

Specificity was quantitatively demonstrated using the titrated 
derivative [3H] NA-G-ALM, or [3H] DA-G-ALM and the CA 
conjugates. Competition experiments were carried out with RIA. For 
anti-NA, the best displacement was observed with NA-G-ALM itself, 
between 10-8 and 10-7M, and DA-G-ALM was 15 times less well 
recognized, between 10-7 and 10-6M, than DA-G-ALM. For anti-DA, 
the best displacement was observed with DA-G-ALM itself, between 
10-8 and 10-7M, and DA-G-ALM was 53 times less well recognized, 
between 10-6 and 10-5M, than NA-G-ALM. From the affinity constant 
and cross reactivity ratio data, octopamine-G-ALM and tyramine-G-
ALM were not considered recognized. Immunostainings using the 
present antiseum have previously published in the rat for anti-NA 
[27,28,36]. 

Specificity of the immunohistochemical reaction was verified in 
the cat brain tissue. No immunohistochemical reaction was observed 
when the anti-NA or anti-DA serum was omitted or replaced by 
non-immune rabbit serum. The staining for anti-NA or anti-DA was 
completely inhibited after preincubation with antigen NA-G-ALM at 
10-5M, or DA-G-BSA at 10-5M, respectively. No staining was obtained 
in the 5-HT-containing cell bodies in the raphe nuclei. 

Anti-DBH and anti-TH were obtained by immunizing rabbits with 
the enzyme purified from bovine adrenal medulla; its specificity and 
characteristics have been published elsewhere [18,35]. As a control of 
immunohistochemical staining, sections were processed as described 
above except that preabsorbed anti-sera with antigen, or nonimmune 
sera were used instead of specific antisera. No immunostaining was 
found. The atlas of Berman [37] as well as that of Loewy and Burton 
[38] was consulted for nomenclature and identification of anatomical 
and stereotaxic planes. 

Results 
Specificities of antibodies 

We successfully stained noradrenergic neuronal structures by 
NA immunohistochemical methods, obtaining distinct images of cell 
bodies as well as their long dendritic arbors in all the regions studied. 
In addition, we clearly identified NA-ir fine varicose fibers in the brains 
of MAOI- (cf. Figures  1 and 3) and non- treated (cf. Figure 2) animals. 

As presented in Figure 1A, treatment with MAOI enhanced NA 
immunoreactivity in cell bodies of the dorsal pontine tegmentum 
(A6 and A7 CA cell groups), including the locus coeruleus (LC), 
locus subcoeruleus (LSC), lateral parabrachial (PBL), and medial 
parabrachial nuclei (PBM). Dendrites and fine varicose fibers of the 
LC were distinctly immunostained by the present antibody anti-NA 
(Figure 1B), though we observed no immunostaining after incubation 
in the antibody preabsorbed by the antigen NA-G-ALM (Figure 
1C). We detected either no, or if any, faint NA immunoreactivity in 
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DMV (also Figure 2J). NA-ir axons were evident in the medial part of 
the mNTS (Figure 2H,I,J) and DMV. Although the AP itself contained 
small DBH-ir cells, only a few were immunoreactive to NA (indicated 
by an arrow in a rectangle, Figure 2C). In the substantia gelatinosus 
(SG, parvocellular subdivision of the NTS), we found small numbers of 
NA-ir fibers, but no labeled cell bodies. 

At the P10.5 level (Figure 2K), we found densely concentrated NA-
ir fibers in the ventrolateral periphery of the DMV, with more moderate 
dispersion in the dorsal and dorsomedial portions of the mNTS, and 
less in number in the lateral portion just medial to the ST. A few NA-ir 

cell bodies could be seen in the ventrolateral periphery of the DMV, 
and occasionally in the mNTS. As shown in Figure 2L, DBH-ir fibers 
presented a very similar distribution to NA-ir ones. We saw a small 
number of stained cells in the ventrolateral periphery of the DMV, and 
occasional ones in the dorsomedial part of the mNTS. 

At the P11.5 level, we detected no NA-ir neurons in the mNTS or 
DMV, which contained a moderate density of stained fibers (Figure 
2N). DBH-ir fibers presented a very similar distribution pattern to NA-
ir ones (Figure 2O). In the medial portion of the DMV at this level, we 
noted DBH-ir punctuated structures, non immunoreactive to NA.
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 Figure 1: Specificity and Topography NA immunohistochemistry after MAOI treatment.
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 Figure 2: NA vs DBH in control animal .

In MAOI-treated animals (Figure  3)

Immunoreactivity to NA in cells and axons was enhanced. This 
treatment thus made it possible to clearly distinguish NA-ir cell 
bodies in regions where DBH-ir cells are present though previously 
undetectable. 

Caudally, we found some small NA-ir cells distributed in the COM 
and DMV (Figure 3A) as well as NA-ir axons more densely packed 
than those seen in non-treated animals (cf. Figure 2A). NA-ir axons 
approached and intersected small blood vessels, either arterioles or 
venules, and frequently climbed along or encircled these vessels (as 
indicated in a square or by arrows in Figure 3B) (also see Figure 3I). 
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More rostrally, at the P15 level (Figure 3C), a horizontally elongated 
dense innervation of NA-ir varicose fibers in the mNTS extended more 
medially to the COM. NA-ir cell bodies could be clearly seen in the 
mNTS, mainly dorsal to the DMV, as well as in the COM and ventrally 
to and within the DMV. Slightly rostrally at the P14 level (Figure 3D), 
we observed densely innervated NA-ir varicose axons in the DVC, 

especially in the ventral portion of the mNTS and lateral periphery 
of the DMV. We detected an aggregation of medium-sized NA-ir cells 
mainly in the ventrolateral portion of the mNTS with small ones in its 
medial part. 

At the level of the AP (P13 level) (Figure 3E), NA-ir fibers were 
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densely innervated in the ventrolateral periphery of the DMV, around 
the Substantia Gelatinosa (SG) containing only a small number of 
stained axons, and in the dorsal strip (DS) of the NTS. We found 
numerous weakly stained small NA-ir cells in the AP as indicated by 
arrows in Figure 3F. In the SUB ventral to the AP with small DBH-ir 
cells, we found only a small number of NA-ir cells as indicated in circles 

(Figure 3F). On the other hand, moderately stained NA-ir cells were 
observable in the mNTS dorsal to the DMV as indicated in a rectangle 
(Figure 3G).

At the P12 level (Figure 3H), we detected intensely stained NA-ir 
cells in the dorsal and dorsomedial portions of the mNTS (indicated 
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in circles), and the ventrolateral periphery of the DMV. We observed a 
fairly dense NA-ir fiber plexus in the dorsomedial portion of the mNTS 
(cf. Figure 2K) and in the DMV. 

Figure 3I (indicated in a square in Figure 3H) presents higher 
magnification of NA-ir fiber innervation in the ventral DMV containing 
a large number of medium-sized NA-negative cell bodies, presumably 
cholinergic. NA-ir fibers were packed within the wall of the capillaries, 
and frequently climbed along or encircled these vessels (indicated by 
arrows in Figure 3I). NA-ir axons seemed in contact with the capillary 
walls throughout the rostrocaudal extent of the DVC (i.e.Figure 3A-J). 
More rostrally (Figure 3J), no or if any very occasional NA-ir cell bodies 
were distinguishable in the DMV containing a dense NA-ir fiber plexus.

In PCPA+MAOI- treated animals (Figure 4) 

We noticed a general weakening in intensity of NA immunoreactivity 
in a dramatically decreased number of axons in all regions studied. 
However, in contrast to the reduced labeled axon plexi, we observed no 
decrease in immunoreactivity in cell bodies. 

As a reference, we present here NA-ir structures in the dorsal 
pontine tegmentum (Figure 4A, B) after PCPA+MAOI treatment. 
We noted a reduction in the number of stained axons (cf. Figure 1B), 
though cell bodies of the A6 and A7 CA groups showed distinct NA 
immunoreactivity (cf. Figure 1A). Compared with those in control 
animals treated only with MAOI (Figure 4C), NA-ir axons decreased 
dramatically in number (Figure 4D) in the hypoglossal nucleus, in 
the medial vicinity of the DVC (cf. Figure 1K, L). In the caudal DVC 
(Figure 4E) at the level of the obex, NA-ir axons decreased in number 
in the DMV, although substantial numbers remained in the mNTS (cf. 
Figure 4D). 

As a reference we have included Figure 4F showing a decrease in 
intensity of DA immunoreactivity in the DVC at the P13 level following 
PCPA treatment. We observed no immunoreactivity to DA in cells and 
only a few DA-ir axons, whereas in MAOI- treated animals, we detected 
some weakly stained DA-ir cells and numerous labeled axons (cf. Figure 
1H). 

At the same level (Figure 4G), NA immunoreactivity remained in 
axons within limited regions, such as the ventrolateral and dorsal parts 
of the mNTS as well as the ventral border (cf. Figure 3E). Although 
smaller in number, we could clearly see the NA-ir cell bodies in a similar 
manner to those in MAOI-treated animals. Those in the AP were too 
weakly stained to detect. 

More rostrally, at the P12 level (Figure 4H), we saw a decrease in 
NA-ir axons in both the mNTS and the DMV. Although small number 
at this level we also detected NA-ir neurons in the DS and the ventral 
periphery of the DMV. 

PCPA treatment made it possible to visualize TH immunoreactivity 
in many cells of the DMV, and DBH immunoreactivity in occasional 
cells. Figure 4I and J present examples at the P12 level. More rostrally 
at the P11 level, we detected no NA-ir cells in the rostral DMV and a 
weakened NA labeling in axons (Figure 4K).

In colchicine+MAOI-treated animals (Figure 5)

We noticed an increase in intensity of immunoreactivity to NA in 
cell bodies extending throughout the entire caudorostral extent of the 
DVC. 

At the P13 level, as shown in Figure 5A, we observed a small 
number of labeled cells as distinctly aggregated in the dorsal portion 

(indicated in a rectangle d) of the mNTS, extending medially in the 
SUB lying ventrolateral to the AP containing a large number of small 
intensely stained NA-ir neurons (square AP). These cells were packed 
in the ventral border of the mNTS (indicated in a rectangle E, also see 
Figure 5E), and some in an area ventrolateral to the DMV. 

At the same level (Figure 5B), we observed intensely stained DBH-
ir cell bodies in the dorsal portion (rectangle d) and the medial part 
of the mNTS as well as in the AP (square AP). However, as shown in 
rectangle F, DBH-ir cell bodies were difficult to detect in the ventral 
border of the mNTS (also see Figure 5F), and in the DMV.

As presented in Figure 5C, DA immunoreactivity became visible 
in DMV cell bodies as indicated in the circle. We detected stained cells 
in the dorsal and dorsolateral portions of the mNTS (rectangle d), 
although less in number in the ventral border of the mNTS (rectangle 
G, also see Figure 5G). The present anti-DA serum did not stain AP 
cells with a few exceptions (square AP). 

TH-ir neurons (Figure 5D) were distributed in the whole extent 
of the AP (square AP) and DMV. We found TH immunoreactivity in 
numerous cells of the mNTS, including the dorsal (rectangle d) and 
dorsolateral portions surrounding the SG as well as the ventral border 
(rectangle H, also see Figure 5H). 

Figure 5I presents a large number of intensely stained small NA-ir 
AP cells and subjacent SUB cells, with an identical distribution pattern 
to DBH-ir cells at the P12.5 level (Figure 5J). Finally, no or if any, 
occasional NA-ir cells could be seen in the more rostral portion of the 
DMV (Figure 5K) at the P11 level where DBH-ir granular structures are 
present (cf.Figure 2O). 

Discussion 
Specificities of Antibodies 

Using a polyclonal antibody raised against NA, the present study 
has provided the first detailed description of NA-ir neuronal structures 
in the cat DVC. Different pharmacological treatments were shown to 
differentially modify both NA immunoreactivity in cell bodies and the 
density of networks. 

NA-ir structures have been described in lower vertebrates such as 
bony fish, amphibians and reptiles [30,31], with medullary NA–ir cells 
showing similar distribution patterns to DBH-ir cells. However no NA 
immunoreactivity has been observed in the SN of non-treated animals. 
In the present study in the cat, we observed no, or very faint staining of 
the SN cells in agreement with that reported in lower vertebrates. 

No detailed description exists of NA-ir structures in mammals 
including the rat, except for some reports with several photomicrographs 
before and after administration of a neurotoxin, DSP-4 (N-(2-
chloroethyl)-N-ethyl-2-bromo enzylamine), which specifically destroys 
LC-originated NA axons [28,39]. One reason for the difficulty in 
using this antibody appears to be due to the weak cross reactivity 
with DA-G-ALM, when DA content increases in SN cells after MAOI 
treatment. In the present study, the specificity of this antibody was 
carefully examined by absorption tests, as well as by the comparison 
with DA-ir structures in the SN, hypothalamus, and other parts of 
the brain. According to cross-reactivity testing in vitro, this antibody 
recognizes DA-G-conjugate at the level of 1/15 [26,27]. In the present 
study, it stained very weakly those SN neurons showing very intense 
DA immunoreactivity. However, it did not recognize hypothalamic 
neurons, which are moderately to intensely DA immunoreactive. The 
antibody stained very weakly striatal intense DA-ir terminals, but did 
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not stain DA-ir axons running in the nigrostriatal pathway. It stained 
clearly NA-ir cells even after a dramatic decrease in DA concentration 
caused by PCPA administration in this region. On the contrary, the 
present anti-DA did not stain NA-ir cells bodies, i.e. AP cells even after 
colchicine treatment. Taken together, these results demonstrate that it 
is safe to use this antibody to stain NA-ir cells and axons in the DVC, 
containing DA-ir fibers in weak to moderate intensity, and a small 
number of cells showing weak DA immunoreactivity. 

Comparison with previous CA histofluorescence studies 

In the present study, we observed weakly to moderately stained NA-
ir cell bodies in the NTS mainly caudal to the obex, though also a few 
in a more rostral portion and some throughout the rostrocaudal extent 
of the DVC in non-treated animals. These results are consistent with 
previous studies [22,25], and with that reported in the rat [19,21] and 
dog [40]. 
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 Figure 5: Effects of Colchicine+MAOI.
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In the rat, previous investigations have reported that CA fluorescent 
cells are distributed mainly in the caudal portion of NTS, as the A2 
CA cell group [19,21]. These were described as being restricted to the 
NTS and DMV caudal to the obex with non-identified in more rostral 
portions. In the cat homologous region, CA fluorescence studies have 
detected only a small number of positive neurons in the posterior part 
lying between the NTS and DMV, and rostrally in the ventrolateral 
periphery of the DMV [22,23,25], although descriptions in these studies 
were focused mainly on the pontine structures and too simplified for 
the medullary ones. According to a more detailed description in the 
canine DVC, only a few CA fluorescent cells were seen in the NTS, with 
some throughout the rostrocaudal extent of the DMV [40]. 

With regards to CA fluorescent fibers, Jones and Friedman [23] 
demonstrated that the mNTS and DMV have the highest density of CA 
fluorescent fibers in the cat. Barnes et al. [40] presented photomontages 
of three levels of canine DVC and reported that a distinct band of 
fluorescent processes marked the dorsal border of the solitary tract 
with the gracile nucleus and a dense plexus in the lateral margin of the 
DMV. In this species, dense catecholamine histofluorescent fibers and 
varicosities are restricted to the mNTS and surround the DMV [20]. 
Our results are in accordance with this evidence that NA-ir fibers are 
observable in all parts of the DVC with uneven distribution. It appears 
that most of them are noradrenergic in nature judging from our results. 
The present study using NA immunohistochemistry has confirmed and 
extended these previous findings. 

Comparison with Data Obtained by Immunohistochemistry 
for DBH and for Other Synthesizing Enzymes 

Using another antibody in the present study, anti-bovine DBH 
[18], we obtained similar results to those previously reported [6]. It 
should be noted that, with some exceptions, DBH immunoreactivity 
was weak in many cell bodies of this region, though relatively intense in 
the A1 and LC cells. A moderately intense DBH immunoreactivity has 
been reported in the rat DVC [5,13,41-43]. Therefore, it appears that 
DBH protein level is low in the cat DVC region unlike that in the rat 
homologous region [5,13]. A slight increase in DBH immunoreactivity 
in somata following treatment with colchicine, which blocked axonal 
transport from the somata to axons, may suggest that DBH was slowly 
but constantly produced in the somata. 

In the present study, we compared the distribution of DBH-
ir cells with that of NA-ir ones in the DVC, and confirmed essential 
similarities. However, in non-treated animals we noted fewer numbers 
of NA-ir cell bodies compared with DBH-ir ones in the AP, SUB, mNTS 
and the ventral periphery of the DMV. In contrast, these became much 
more numerous than DBH-ir cell bodies following MAOI and/or 
colchicine treatments to enhance NA immunoreactivity. This suggests 
that in these regions, small amounts of synthesized NA from the 
somata are released into the synaptic space and either taken up by the 
NA transporter (NAT) into the preterminal for oxidation by MAO, or 
rapidly removed to the axons. In addition, DBH-ir granular structures 
in the rostral ventral DMV showed no immunoreactivity to NA even 
following MAOI+Colchicine treatment. 

DA immunoreactivity in the DVC is very weak in cell bodies and 
axons in non-treated animals and weak even after MAOI-treatment. 
This may be due to the rapid conversion of DA to NA by DBH. In fact, 
inhibition of DBH activity by FLA63 increased DA immunoreactivity 
in the rat [44]. It should be noted here however, that in this region, 
cell bodies and axons showing immunoreactivity to TH but not to 
DBH have been reported in the rat [5,13] and human [9]. In the cat, 

according to Reiner and Vincent [17], TH-ir neurons far outnumbered 
DBH-ir cells in the AP, with slightly greater numbers of TH-ir cells seen 
in the COM, and uniquely TH-ir neurons seen within the DMV more 
caudal to the obex. We have examined this result in previous work, and 
identified immunoreactivity to AADC in many cell bodies of the cat 
DVC [7], with cells immunoreactive only to DA in the cat DMV [8] and 
in the NTS; though not in the AP, even after colchicine treatment (the 
present study). A detailed description of DA-ir cells will be presented 
in the next publication.

Effects of MAOI 

It is well known that, in vitro and in vivo, NA is a specific substrate 
for type A MAO (MAO-A) present in the outer membrane of 
mitochondria [45-47]. Although mostly known as a specific inhibitor of 
type B MAO (MAO-B), pargyline also acts on MAO-A activity at high 
doses blocking the precipitation of oxidized product in NA cells [48]. 
In fact, i.p. injection of pargyline at 75 mg/kg has been shown to induce 
a 130-150% increase in DA and NA, respectively, and a 90% decrease 
in the DA metabolite DOPAC (3,4-dihydroxyphenylacetic acid) in the 
rat brain [49]. 

Once released into the intersynaptic space, NA is taken up by the 
NAT to the presynaptic structure where it is inactivated by MAO-A 
and catechol-O-methyltransferase (COMT). Pau et al. [50] described 
strong radiolabeling of NAT binding sites in cell bodies of the rabbit. 
The variation in density of binding sites seen using a selective ligand 
[3H] nisoxetine to NAT in the monkey DVC [10] is quite similar to 
that of NA-ir axons in the DVC obtained after MAOI treatment in the 
present study. This confirms that in NA axons, NAT takes up NA into 
the presynaptic terminals for subsequent inactivation by MAO. 

The present study has demonstrated that inhibition of MAO 
enhances NA immunoreactivity in DVC cells and axons, and 
consequently increased their number, especially rostral to the obex. We 
observed lightly stained NA-ir cells in the SUB and the ventral border of 
the mNTS, and more rostrally in the dorsal NTS. This suggests greater 
metabolic activity in rostral NA neurons compared to caudal ones 
under normal conditions. 

Although the localization of COMT-containing structures in 
the DVC has not been elucidated, immunoreactivity to MAO-A 
has been reported as present in NTS cell bodies of the monkey and 
human [51,52]. We have previously demonstrated very strong MAO-A 
enzymatic activity in numerous DMV neurons of the cat [53,54], 
though never in NTS neurons [46]. It remains to be demonstrated how 
NA is oxidized in such cell bodies. 

On the other hand, NA immunoreactivity remained very weak in 
AP cells, even after MAOI treatment. This may be due to the removal 
of NA from the somata by anterograde axonal transport which we will 
discuss later in this manuscript. 

Effects of PCPA

From a morphological viewpoint, it is interesting to note that after 
treatment with PCPA, NA immunoreactivity decreased dramatically 
or disappeared in axons even after MAOI treatment but remained 
sufficiently intense in cell bodies. 

Firstly, the present study demonstrated as a reference, a dramatic 
disappearance of DA immunoreactivity in DVC cell bodies and axons, 
normally containing small amounts of DA. In fact, biochemical studies 
have reported a reduction in DA though levels of its metabolites 
remained constant after PCPA treatment [55]. We previously reported 
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that the intensity of immunoreaction (reflecting protein level) of 
TH, the rate limiting enzyme for converting L-tyrosine to L-DOPA 
[56], increases after PCPA treatment, especially in DMV cells ([53] 
and the present study) to compensate for the decrease in DA. Under 
the same conditions, in the present study immunoreactivity to DBH 
remained unchanged, since DBH is not the rate limiting enzyme in the 
biosynthesis of NA. It is reasonable to suggest, therefore, that decreases 
in NA immunoreactivity in the brain may not be due to decreasing 
DBH enzymatic activity but rather to the deficiency of its precursor, 
DA. With DA no longer available for NA synthesis, this decrease in the 
precursors might induce a concomitant decrease in NA. 

Previous biochemical studies have reported that PCPA induces a 
significant decrease (up to 90 %) in 5-HT and a slight decrease in NA 
(up to 20 %) in the whole brain [57]. This substance acts by inhibiting 
tryptophan and phenylalanine hydroxylases [32], and decreases 
concentrations of L-5-hydroxytryptophan (L-5-HTP) and L-tyrosine, 
and consequently those of 5-HT, L-DOPA, and DA. 

With regards to levels of NA in cell bodies, the present results are 
consistent with previous biochemical studies on NA concentration in 
the brain. Biochemical assays have reported a decrease in NA limited 
only at 20 % 2 days after PCPA treatment as mentioned above. It 
appears that cells containing DBH as well as TH and AADC may take 
up decreased L-tyrosine from the blood circulation to synthesize NA. 

However, a decrease in NA immunoreactivity in axons appears to 
be inconsistent with biochemical data indicating that central NA levels 
remain high to nearly 80% of control [57,58]. This discrepancy may 
be due to the difference in methods employed. Biochemical assays 
measure whole NA levels in cerebral tissues including circulating 
blood containing high levels of NA produced in the periphery due to 
incomplete L-tyrosine synthesis inhibition. 

This fact may be due to much smaller amounts of vesicular 
NA storage in axons than in somata, and more rapid utilization 
than synthesis of NA from diminished L-tyrosine derived from the 
circulation. NA decrease after PCPA treatment has been shown as 
being accompanied by an increase in its metabolite, 3-methoxy-4- 
hydroxyphenylglycol (MHPG), indicating an augmented utilization of 
this amine [55]. 

It is also possible that different levels of accumulated NA taken up 
into presynaptic terminals depend on NAT activity. In the brain stem, a 
strong radiolabeled density of the NAT selective ligand [3H] nisoxetine 
has been observed in the LC (100%), DMV (35%) and NTS (21%), 
attaining only 10-12% in the 12N and IO, containing only NA axons 
[10]. 

It is known that NTS receives NA inputs from caudally located 
DVC [4,21,43,59], AP [60] and ventromedially located A1 cell region 
[61]. It should be noted in the present study that NA immunoreactivity 
in axons of the other parts of the medulla oblongata decreased in 
intensity and becoming either undetectable or very few in number in 
more distant axons. For example, those NA-ir axons forming a dense 
innervation in the hypoglossal nucleus originating from the A5 and 
A7 NA cell groups significantly decreased in number. NA-ir fibers also 
decreased in number in the inferior olive and raphe pallidus nucleus in 
which dense NA-ir fiber plexi are normally present. We noted an almost 
complete disappearance in more distant axons of the hypothalamus 
and limbic areas including the amygdaloid complex, to which parts of 
them are supplied from A2, A1 and A6 NA-ir cell bodies [62,63]. Based 
on these data, it is most likely that any remaining DVC NA-ir axons 
originate within the proximal NA-ir cell bodies mainly lying in the 

caudal DVC, as has been reported or suggested above by many authors 
[4,21,43,59-61] 

In all, we can conclude that NA levels in somata remain relatively 
high even after PCPA treatment and even though a small amount of NA 
in axons is rapidly depleted. 

Effects of Colchicine 
We observed an accumulation of NA immunoreactivity in DVC cell 

bodies after colchicine+MAOI treatments, used to ensure the detection 
of as many cells and axons showing NA immunoreactivity as possible. 

With regards to AP cells, no CA fluorescence With regards to AP 
cells, no CA fluorescence has been reported in the rat, rabbit, cat or dog 
[19,22]. In addition, we have failed to detect any DA immunoreactivity 
even after treatment with colchicine+MAOI in AP cells containing 
TH, AADC, DBH [7,44] and GTP cyclohydrolase I (GCH, enzyme for 
synthesizing biopterin, a co-enzyme for TH) [64], despite the prediction 
made by Kalia et al. [5,13]. 

Although able to demonstrate here the presence of NA 
immunoreactivity in some AP cell bodies in non-treated and/or MAOI-
treated animals, we observed very weak or weak intensities respectively. 
However, intense immunoreactivity to NA became detectable in AP cells 
after treatment with MAOI+colchicine which blocks axonal transport 
thus leading to an accumulation of the substances in the originating 
cells. This evidence suggests a rapid removal of newly synthesized NA 
in the somata to axons projecting to for instance the NTS, parabrachial 
nucleus and the paraventricular hypothalamic nucleus [60]. 

The anterograde transportation of DBH and NA is now well 
established [33]. According to Levin [65], DBH and NA, primarily in 
particulate form, appear to be associated with fast axonal transport (24-
48 mm/day) whereas TH, predominantly in soluble form, with slow 
axonal transport (13-20 mm/day). 

On the other hand, we cannot exclude the possibility that plasma 
NA taken up by AP cells is removed rapidly to the axons. Earlier studies 
reported the uptake of intraventricularly injected alpha-methyl-NA 
or radiolabeled NA into AP cells which have no brain blood barrier, 
indicating they have the capacity to take up NA [66-68]. Indeed, 
positive expression of radiolabeled NAT mRNA is very intense in rat 
and rabbit AP cell bodies [50,69]. AP cells maintained in vitro up to 6 
h with a retention of structural characteristics of viable tissue in a NA 
pool labeled with [3H] NA, show an evoked stimulated release of [3H] 
NA with 56 mM K+ [70,71]. 

The NTS cells showed NA immunoreactivity after this 
treatment, especially in the dorsal portion, containing intense DBH 
immunoreactivity. On the other hand, the presence of intense NA 
immunoreactivity in very weakly stained DBH-ir cell bodies or DBH-
negative cell bodies remains puzzling. One plausible explanation is that 
new NA, synthesized by a very small amount of DBH undetectable by our 
antiserum, accumulates in cell bodies over 48 hours after the treatment. 
In order to further elucidate on this, further studies will be necessary in 
the rat taking advantage of the intense DBH immunoreactivity in DVC 
cell bodies. 

Physiological Implication
The NTS contains motor respiratory cells belonging to the dorsal 

respiratory group and contributes to the respiratory response to 
environmental challenges such as hypoxia [72]. The NTS region is 
connected by neural projections to the ventrolateral medulla (VLM), 
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a region containing the motor neurons of the ventral respiratory 
group. The NTS A2C2 and VLM A1C1 CA cell groups are adjacent 
to, or intermingled with the respiratory neurons [73,74]. Although the 
respiratory neurons do not synthesize or store CA [74], they possess 
adrenergic receptors and receive close appositions from TH-ir neurons 
[75,76]. 

We previously reported an increased NA turnover in the caudal 
part of A2 (caudal to the obex), remaining unaltered in the rostral part 
(rostral to the obex) of the rat exposed to hypoxia for 14 days [77]. 
In fact, under this condition, TH enzymatic activity and TH mRNA 
level increased in the caudal part after 7 days of hypoxia [78,79]. The 
delayed activation of TH suggests an involvement of A2 caudal NA cells 
in the central chemoreceptor pathway during long-term but not acute 
hypoxia. 

Further quiescent noradrenergic cells in the NTS are recruited 
and participate in the overexpression of TH in this area [78]. The 
overexpression of TH protein correlates with increases in ventilatory 
output after acclimatization to hypoxia [80]. The major role played 
by noradrenergic neurons in the caudal NTS as neuromodulators of 
hypoxic ventilatory output is further underlined by their capacity to 
respond to hypoxia by expressing the transcription factor HIF-1α [81]. 
HIF-1α participates in the enhanced metabolic activity associated with 
the physiological responses to hypoxia [82] and, in particular, is capable 
of enhancing TH gene transcription [83]. 

In addition, the hypotensive drug dihydralazine induced a reverse 
effect, namely increased NA turnover in anterior A2 with no change in 
posterior A2 in normoxic rats [77]. The neurochemical responses to 
hypoxia were abolished by transaction of carotid sinus nerves. These 
results indicate that the caudal A2 group is influenced by peripheral 
chemosensory inputs, whereas the rostral one may be concerned 
with barosensitivity. They also suggest an increased sympathetic 
activation, possibly involved in the mediation of respiratory responses 
to hypoxia. On the other hand, 73 to 85% of NA cells expressed 
c-fos immunoreactivity following exposure of unanesthtized rats to 
hypercapnic stress for 60 min [84]. 

In the cat A2 region, without any treatment, NA is more 
concentrated in caudally located cell bodies than those more rostrally 
(the present study). NA may be utilized more in the caudal part than in 
the rostral part under long-term hypoxia, and consequently TH activity 
may be increased to maintain NA concentration. 

On the other hand, NA in the NTS has known involvement in 
cardiovascular function. Intraventricularly injected NA decreases BP 
and heart rate [85]. Lesion of the NTS provokes hypertension [86,87] 
whereas electrical stimulation of the NTS causes hypotension and 
bradycardia [88]. The A2 region is the most sensitive to locally applied 
CA [89]. The NA release rate transiently diminishes during and after cat 
carotid occlusion [90]. NA neurons of the NTS receive impulses from 
baroreceptors of the carotid sinus and aortic arch [91]. Microinjection 
in situ of NA induces a dose-dependent decrease in blood pressure 
believed to be mediated by the alpha2 receptor. 

As mentioned above, the NTS at the level of the obex receives 
noradrenergic input from neurons originating within the more caudal 
DVC and AP, and ventromedially located A1 cell region. The NTS also 
receives input from the nodose ganglion. Sumal et al. [92] reported 
wide distribution of vagal afferents autoradiographically labeled by 
[3H] amino acids throughout the more caudal NTS TH-ir cell bodies. 
A2 TH-ir cells were shown to express c-fos protein following unilateral 
electrical stimulation of abdominal vagal afferents [93]. NA neurons in 

the rat NTS participate in the esophageal-gastric relaxation reflex [94]. 
Increase or decrease in DVC NA by MAOI or PCPA treatment as well as 
in situ microinjection of CA neurotoxin may clarify in more detail the 
physiological implication of DVC NA in autonomic regulations. 

The NTS CA cells reportedly send their axons to the medullary 
autonomic brain regions parabrachial region, and to more distant 
areas such as the hypothalamus and amygdala [38,95]. The injection of 
cholecystokinin reduces rat supraoptic NA immunoreactivity in fibers 
originating exclusively within the A2 region, which expressed c-fos 
protein [96]. This indicates an increase in neuronal activity and NA 
production. 

With regards to the DMV, we demonstrated here that in the cat, 
NA-ir cells are mainly restricted to the caudal portion of the DMV with 
some at the ventral periphery. Using double immunostaining of TH and 
DBH with the retrograde tracer Fluoro-Gold, Yang et al. [97] showed 
that the rat subdiaphragmatic vagal CA fibers originate within TH-ir 
cells in the DMV (75%), among which 12% are noradrenergic mainly 
lying in the caudal portion. 

On the other hand, with regards to the rostral DMV, we observed 
densely innervated NA-ir axons seemingly in contact with medium-
sized nonlabeled cell bodies sending to preganglionic parasympathetic 
nerve fibers, i.e. to the laryngeal, tracheobronchial, pulmonary, cardiac 
and gastrointestinal branches [98-100]. Many of these neurons are 
cholinergic [41] and a possible involvement of the noradrenergic 
innervation of DMV in direct synaptic inhibition of parasympathetic 
preganglionic neurons of the vagus has been considered as follows. 

Radiolabeling the alpha2 binding site, using [3H] para-
aminoclonidine, Unnerstall et al. [101] reported highest grain 
densities in the rat and human DMV (also [102]). The dense NA-ir 
fiber innervation in the DMV observed in the present study correlates 
well with these previous studies suggesting the possible existence of 
alpha2 NA receptors in DMV cholinergic cell bodies. As a result DMV 
cholinergic neurons modulating preganglionic regulation would be 
influenced by NA axons. 

In the periphery, adrenergic inhibition could play a predominant 
role in decreasing acetylcholine (ACh) release. Akiyama and Yamazaki 
[103] demonstrated the adrenergic modulation of endogenous ACh 
release from vagal nerve terminals in the in vitro heart. Siaud et al. [104] 
investigated the effects of bilateral 6-hydroxydopamine (6-OHDA) 
lesions with adrenergic innervation of the DMV on pancreatic insulin 
secretion in normal and vagotomized rats. After two weeks the 6-OHDA 
lesions produced a marked increase in circulating insulin levels. 

Finally, in the electrophysiological field, PCPA induces long lasting 
insomnia accompanied by Ponto-Geniculo-Occipital (PGO) waves, 
originating in the pons to activate thalamus and visual cortex. PGO 
waves occur normally during Rapid Eye Movement (REM) Sleep, 
equivalent to dream state in humans [105]. The production of REM 
sleep is generated by pontine and/or medullary cholinergic system 
[106] which is inhibited by 5-HT and NA neurons during waking and 
sleep. A decrease in these amines by PCPA disinhibits pontine and/
or medullary cholinergic mechanisms and induces PGO waves. The 
present results showing a decrease in NA immunoreactivity in axons, 
provide evidence to explain the induction of PGO waves after PCPA 
treatment which decreases dramatically NA and 5-HT in axons.
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