
A Novel Cloud Computing Software Engineering Strategy Based
on "Socialised Architecture"

Rajesh Kumar*

Department of Computer Science and Technology, Radha Govind University, Ganrke, India

Corresponding Author*

Rajesh Kumar
Department of Computer Science and Technology
Radha Govind University,
Ganrke, India,
Tel: 8396945480
E-mail: rajeshasuszen@gmail.com

Copyright: © 2023 Kumar R. This is an open-access article
distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source
are credited.

Received: June 06, 2023, Manuscript No. IJIRSET-23-100870;
Editor assigned: June 08, 2023, PreQC No. IJIRSET-23-100870 (PQ);
Reviewed: June 22, 2023, QC No. IJIRSET-23-100870; Revised:
August 07, 2023, Manuscript No. IJIRSET-23-100870 (R); Published:
August 14, 2023, DOI: 10.35248/IJIRSET.23.4(2).007

Abstract

The cloud represents a revolution within the revolution of the
internet today. However, an oligopoly supporting the cloud may
not be the best solution, given the potential for ethical issues like
privacy and even the transfer of data sovereignty. Our study,
which we call the "socialised architecture," proposes a new
disruptive approach that has the potential to fundamentally alter
the current state of the cloud. This method is similar to those
used in volunteer computing in that it attempts to pool unused
computing resources present in the hardware owned by
institutions and regular people. However, unlike existing options,
ours does not involve developing hyper-specialized muscles
in client machines. The novel aspect of this solution is the
software engineering approach it proposes for building "socialised
services," which, by means of an asynchronous interaction model,
generates a system of lightweight micro services that can be
dynamically allotted and replicated across the network. While an
API gateway takes care of communication, modern design
patterns like command query responsibility segregation help to
compartmentalize domain events and persistence requirements.
A fully functional proof of concept, a prototype called circle that
implements a social network, was used to evaluate all of the
preceding ideas. Circle has helped bring to light issues that
need fixing. We agree with the evaluation's conclusion that
venturing into this area of expertise is worthwhile.

Keywords: Software architecture • Micro service • Cloud •
Distributed systems • Socialised services

Introduction
It's common knowledge that we reside in a highly digitised

world, where computers form an integral part of our daily lives and
are required for the growth of a respectable existence. It's not hard
to see the positive effects they've had, such as the
enhancement of countless processes, economic expansion,
and increased wealth. The loss of jobs to automation, the
gap between the sexes and generations in terms of
technology access, and the proliferation of privacy scandals in the
media are all shortcomings that are not hidden [1,2]. While these
are all very valid concerns, there is also the issue of how
dependent these cloud hosted systems are. In 2018, in house
deployments, or those hosted on the company's
own infrastructure, made up 37% of all deployments.

 In 2020, only two years from now, 83% of deployments will be made
using cloud based solutions [3]. The cloud's market share has grown
by 10% in just the past two years. By 2025, cloud services will have
replaced all others. The advent of cloud hosting, which itself
represents a revolution within the internet revolution, is to blame for
this development.

Companies make the move to the cloud primarily because of the
cost savings afforded by the cloud computing revolution [4]. When
compared to on premises solutions, the cloud provides levels of
scalability, replication, and fault tolerance that are simply not possible.
Because of its ease of use, infrastructures that would have taken
several systems engineer’s months to set up can now be set up with
just a few mouse clicks. However, Amazon, Microsoft, And Google
control approximately 74% of the cloud hosting market [5]. They
monopolise a platform used by 93% of the world's corporations. The
numbers add up: 68 out of every 100 cloud users businesses will rely
on cloud storage for some kind of data. The power we are giving
these corporations is comparable to that of states if, as we have said,
those 68 systems are nuclear components in the lives of millions of
people. Without question, half of all government agencies currently
use cloud based solutions in their operations [6].

There may be moral issues due to the concentration of power in
the hands of so few companies [7]. In addition to providing the
processing power, cloud service providers also host the information
that is used by the applications. Even though users are shielded from
unauthorised access to their data by legal frameworks, nothing stops
the operator or the same company from accessing the contents of
the infrastructure, which they ultimately control, without leaving any
traces. Although privacy is a pressing concern, we can't overlook the
possibility of other issues, such as the blocking of access to vital
resources, the alteration of previously collected data, or the
interruption of service for nefarious reasons. One potential downside
of moving to the cloud is that it could mean giving up control over our
data and the reliability of our systems to multinational conglomerates.

However, just because these problems are theoretically
conceivable doesn't mean that they will actually occur. They're not
inevitable, but they're worth thinking about and, ideally, avoiding
anyway. Of course, safety should not be sacrificed for the sake of
abandoning the cloud's many advantages. Typically, for profit
businesses are responsible for creating new computer systems.
Fighting oligopolies for social and ethical reasons will never be a
convincing argument for abandoning that fight. If you want to change
things and start hosting your own systems again, one strategy is to
work hard to make those systems profitable in the long run, by
providing viable alternatives to the cloud's "status quo" that can
compete on price and reliability. This was meant to be the outcome of
the study. The most important results of this study are:
•

•

 This article begins by highlighting some of the many problems
to address and the many disciplines involved in developing a
viable alternative to the cloud, including but not limited to
software engineering, distributed systems, and security. The study's

International Journal of Innovative Research in Science, Engineering and Technology, 2023, Vol.4, Issue 2, 1-10 Research Article

1

The central ideas for a new cloud architecture based on hosting
"socialized services" are explored. The solution relies on micro
services and an asynchronous interaction model.
Introduces a plan for creating "socialised services" by leveraging
advanced software engineering patterns like Command Query
Responsibility Segregation (CQRS) and an Application Programming
Interface (API) Gateway [8].
Creates a working model, named circle that demonstrates the
viability of the proposed solutions and highlights any remaining
issues.

•

preliminary ideas are a small step in the right direction, especially
for software engineers. Because of this, subsequent studies and
businesses can build upon this foundation by refining and
envisioning even better solutions, which can eventually lead to a
truly sustainable new cloud. However, the open innovation field
proposes an alternative innovation model wherein businesses
commercialise both external and internal ideas by employing
external and internal routes to market. Therefore, ideas from
outside the company have a variety of options for
commercialization, including licensing deals and new ventures. Thus,
the work presented here can form the basis for a new product, namely,
this new sustainable cloud that fixes the issues with the current cloud
[9,10].

This article's results should be interpreted as both a vision
statement and a "proof of concept." Regarding this, we propose an
architecture that, at a reasonable price, permits dependable and secure
deployments outside the current cloud without incurring the
unsustainable on premise approach, which has drawbacks such as
high maintenance costs and equipment obsolescence. The term
"socialised architecture" describes the system we developed.

The rest of the article continues below. The article's research
is contextualised and a literature review is presented in section 2.
The methodology used in this study is discussed in section 3. Our
findings and evaluations are presented in section 4. In section 5,
we'll look at some of the most relevant aspects of this study.

Purpose statement and review of related work
The term "socialised computing" refers to the practice of sharing

a system's computing resources and, eventually, its storage, among
its users in the interest of working with businesses looking to take
actions with a transfer motive impact, or with any entity betting on a
decrease in cloud hosting. Whether out of altruism or self-interest,
"socialization" entails supporting a portion of the system by hosting
its components. This results in highly dispersed settings running
on a varied set of servers.

Instead of the centralized approach that has been taken in the past
which is discussed and critiqued in section 2.1
we propose decomposing a multipurpose system (the core of
any contemporary system) into a collection of decoupled services.
As a result, any user who wants to take part in the "socialization"
process can host a copy, or copies, of any of the "socialised services"
that make up the system on their own local machine. These
socialised replicas would function as equals to those hosted locally
or in the cloud by the system's owner. Depending on the current
demand, the company could dynamically increase or decrease
the number of socialised replicas. A critical mass of users
would make it possible to eliminate cloud reliance entirely.
Although the concept of sharing computational resources
equitably is novel, several established technologies already
exist to put it into practice. Our proposal is supported by
the following primary tools, methods, and technologies:

 Late in the 1980’s, a phenomenon known as Volunteer Computing
(VC), also called cycle stealing system or public resource computing,
emerged. The idea of helping out a good cause by providing access
to local computing resources is not new; the review in updates
dozens of works in the field of VC, proposed in the last few years [12].
In VC, anyone with access to a computer can pool their unused
processing power to complete data and computation intensive tasks
[13].

 According to Mengistu, T.M, a VC system consists of resource
nodes, which are volunteer nodes that donate unused resources, and
a resourcecontroller, which manages the donated resources and acts
as an entry point for both volunteers and VC system users. This
section of summarizes the operation of VC systems. The user
submits the task(s) to the resource controller, which, after
preprocessing, chooses an appropriate resource node(s) to deploy
the task(s) to; the task(s) are then executed by the resource node(s)
and the results are sent back to the Controller. VC systems can have
a centralized (client/server, C/S), decentralized (P2P), or hybrid
architecture, depending on how they are deployed. In a C/S setup,
one or more dedicated computers serve as servers, managing other
computers' access to shared resources. Without a central authority,
communication can be coordinated thanks to P2P's reliance on
volunteers acting as resources and controllers. The advantages of C/
S in terms of security and trust leverage are combined with the
scalability and adaptability of P2P in hybrid architecture. An
advantage of a central server is the global resource directory it
provides.

It's worth emphasizing that all three models (C/S, P2P, and hybrid)
work well with the "socialised architecture" and can be used to
implement it. This is because the infrastructure layer imposes no
limitations on deployment and instead merely provides an API with a
subset of features. In reality, this is a resource controller, albeit a
lightweight one, whose responsibilities include resolving service
addresses, balancing loads, collecting data, and translating
protocols. The infrastructure layer then functions as a decoupled,
asynchronous component, communicating with clients and
resources. Therefore, we can pick an appropriate implementation
based on the features that need to be prioritized, such as scalability
versus security. Circle's resource controller serves as an API Gateway
thanks to its use of the graph query language [14].

The "socialized architecture" aims to propose a
comprehensive alternative to the current "status quo" of the cloud,
but we have not found any works in the literature that share this
objective. Nonetheless, in the VC field, Kirby, et al. and Che and
Hou discussed initial models for desktop clouds, then proposed
alternates of possible architectures and discussed some of the
challenging aspects to address, all of which are similar to our
work. Multiple projects have taken inspiration from these
prototypes and proofs of concept to implement their own
solutions [15-17]. In, we find the Cloud project, which is based on.
Clients, similar to what happened in BOINC related projects, run
guest Virtual Machines (VMs) and install a middleware that
controls the node, in this case for monitoring its utilization and
QoS. Cloud Stack was used to create this product [18].

 The Virtual Machines (VMs) used by AdHoc cloud are
hosted by volunteer computers running BOINC and virtual box [19].

The server schedules, monitors, and manages the jobs, the
entire system, and the VMs in C/S architecture. To communicate
with the server and carry out the tasks, the client sets up some kind
of middleware. Both paid and unpaid nodes are used in nebula
[20]. Chrome's native client sandbox is used to perform the
computation, eliminating the need for Virtual Machines (VMs)
and allowing full advantage to be taken of chrome's security
features. Volunteers are tracked, given information, and assigned
tasks while the system manages load balancing. To achieve a
fully distributed cloud system managed by an underlying network,
P2PCS employs P2P architecture (Table 1). To make requests to
the system and communicate with peers, middleware must
be installed on every participating node, in this case as a
daemon. For P2PCS, a Java based prototype has been created.
Finally, the key features of these desktop clouds are
summarised and compared to the "socialised architecture" in the
Table. Whether or not this method defines a software
engineering approach for creating client applications is indicated
in the "Sw Eng. Approach" column [20,21].

International Journal of Innovative Research in Science, Engineering and Technology, 2023, Vol.4, Issue 2, 1-10 Kumar R

2

Virtualization. In particular, container based lightweight virtualization
likes docker [11].
Non real time conversation. New communication patterns made
possible by developments in distributed systems enable low
latency, dependable transmissions.
Micro services. A pattern for designing systems that encourages
scalable, cohesive services with low coupling between them.
Patterns like command query responsibility segregation help
developers keep their asynchronous code organized.

•

•

•

•

Approach Architechture Only volunteer Virtualization Middle ware in
client host

Sw. eng approach Related projects

Socialized
architechture

C/s, P2P, hybrid No Containers No Yes

Cucloud C/s Yes VMs Yes No BIONIC, could stack

Adhoc cloud C/s Yes VMs Yes No BIONIC, could stack

Nebula C/s No No No No Chrome

P2PCS P2P Yes No Yes No

Storage home, Fatman, STACEE, and SAS cloud are just some of
the projects that focus on a specific aspect of the cloud, such as
cloud storage. They are community driven cloud storage initiatives
that offer substitutes for paid services like Amazon's simple storage
service (S3) [22-25]. With C/S architecture, storage home pools the
space that its users donate and offers backup features. Fatman is an
archival system that utilises tens of thousands of idle servers in C/S
architecture. To achieve its goals of reducing energy consumption
and increasing user participation, STACEE proposes four layer
architecture (backend, services, adaptation, and economic
indicators) based on economic metrics such as energy [26]. It makes
use of a scheme in which resource provision is handled in a dynamic
fashion. SAS cloud is an ad hoc, mobile cloud storage service that
guarantees the safety of your data. The hybrid architecture in use
here features both a centralized administration and node registering
clients. In addition, there is a sizable body of work that focuses on
enhancing cloud based services, such as social networking. SoCVC
and SOCIALCLOUD are two examples. The first is a proposal in a
paradigm that uses trust relationships prevalent in social networks
like Facebook and twitter to construct cloud computing services. To
verify the identities of its users, SoCVC (Social Cloud for Volunteer
Computing) taps into the APIs of popular social media platforms like
Facebook. In addition, it suggests algorithmic indicators of users'
social reputations. At last, references discuss some other systems
worth considering in this group [27-30].

There are fully functional projects in the field of VC that can be
compared to the "socialised architecture," despite the fact that their
goals and features differ significantly from our own. They provide
technological answers that could be useful down the line, and could
even be recycled here. The scientific community employs BOINC for
compute-intensive tasks. It's a multipurpose piece of middleware
that can be downloaded and installed on any willing computer. New
task assignment algorithms that claim to minimise completion time
are given in, while explains the BOINC architecture and the
scheduling problem for assigning tasks to volunteers. Conventional
technologies like relational databases, web services, and daemon
processes are all used by BOINC. We can see that the project's
intended architecture and technological components are very
different from what we've proposed. The Search for Extraterrestrial
Intelligence at home (SETI home) is a BOINC hosted signal
processing project. Using C/S architecture, the clients pull down the
work units, run them locally, and then send back the results. The
redundant computation used to identify malicious users is the most
notable feature. Again, our proposal is very different from SETI home
in terms of both its purpose and its design. Mobile app dream lab
facilitates collaborative computing for COVID-19 projects. For BOINC
and SETI home, this is accomplished by installing a programme on
regular computers so that they can carry out computationally
demanding tasks. The users in all three cases are acting altruistically
[31-34]. In these projects, however, the local software components
always serve as mere slave executors of a single, highly specialized
task that requires extensive computing resources. In contrast to our
proposal, the software components are not integral parts of a single
supercomputer but rather are orchestrated from afar. A muscle that
has become overly specialized for a single task.

We found the following to be current among VC proposals.
Combining Virtual Communication (VC) with Vehicular Ad Hoc

Networks (VANET)

 We found the following to be current among VC proposals.
Combining Virtual Communication (VC) with Vehicular Ad Hoc
Networks (VANET) is proposed in Waheed, A. The plan is to put
unused computer power in vehicles to good use. Whether vehicles
are parked, waiting at a light, stuck in traffic, or moving along
smoothly, the work defends the existence of a large pool of available
resources in each of these situations [35]. Instead of suggesting a
specific architecture, we will discuss the principles behind using a
VANET for virtualization computing (master slave computation).
Specifically, taxonomy for this emerging field is discussed, along with
examples of its potential application and the difficulties that may
arise from doing so. High performance computing, autonomous
vehicles, intrusion detection, content distribution, connectivity, and
efficient communication are just some of the standard uses for this
computing surplus. For Mobile Edge Computing (MEC) systems, Cao,
et al. proposed a new user cooperation approach for computation
and communication within the realm of 5G cellular technologies [36].
The goal is to enhance energy efficiency for computations with
limited tolerance for delay. The work is predicated on the idea that
nearby access points and cellular base stations can take over
computation-intensive and latency critical tasks from nearby wireless
devices.

Materials and Methods
Our research methodology consisted of first creating a proof of

concept. In order to evaluate the "socialised architecture" concepts
presented in the previous section, we decided to create a working
prototype. Due to the dearth of literature on the topic, a purely
theoretical proposal and discussion may not be adequate treatment
of such a revolutionary idea. As an added bonus, when confronted
with a real development, details that would normally remain
concealed become apparent.

To fully develop the "socialised architecture" would require the
invention of numerous difficult features. New technologies would
have to be created, complex security issues would have to be solved,
and micro-services tailored to specific use cases would have to be
designed. Next, we suggest putting into action a prototype system at
a small scale that is robust enough to take into account as many
possible scenarios and features while still providing a solid
foundation upon which to reason and draw actionable conclusions.

On January 1, 2022, we launched circle, a social network with
features and aesthetics not dissimilar to Twitter's [37]. Circle
complies with a comprehensive grading scheme. Short texts written
by registered users and rated by other users' favorability are stored
and can be retrieved by the most recent or highest rated publications
or by the most popular users. Subscriptions and alerts are another
feature provided by circle. The most important features are outlined
in Table 2. The domain may seem simple at first glance, but it
actually has a lot of depth and can accommodate many different
applications. It can also be broken up into smaller, more manageable
pieces that can be handled by their own micro services without
requiring any heavy duty cross communication.

International Journal of Innovative Research in Science, Engineering and Technology, 2023, Vol.4, Issue 2, 1-10 Kumar R

3

Table 1. Comparison with desktop clouds.

Users
FR1 A user can sign up for the system with just a user name and email address.
FR2 users are able to update their information in the system.
FR3 you can look up other user’s profiles on the system by searching for their username in a list of all users, or you can query the n-top users who
have the most publications or the most subscribers.
Contents
FR4 publications, complete with title and text, can be added to the system.
FR5 users are able to "like" other users' posts on the platform.
FR6 you can use the system to look at the n most popular recent publications or the n most popular liked publications.
Subscriptions
FR7 users can subscribe to one another on the system.
Notifications
FR8 subscribed users are notified via email whenever new publications are made available.
FR9 when another user subscribes to a user's publications, the system notifies that user via email.
FR10 when another user "likes" one of a user's publications, the system sends that user an email.

Circle is queried via an API in GraphQL, and it provides
services to support user needs, persistence, and the requisite
technical infrastructure. In order to consistently meet the
requirements for experimentation and analysis, the richness of the
system necessitates dealing with the following aspects, despite the
lack of a user interface:

Results
The proposals being considered at the moment to actualize

the ideas behind the "socialised architecture" are presented and
discussed in this section. Our ultimate goal was, as was
mentioned earlier, to pioneer new research territory. Thus, these
are preliminary ideas, a jumping off point for additional study. In
our opinion, the best way for researchers to grasp and understand
the underlying concepts is to provide an initial, albeit modest,
body of solutions. Therefore, the reader should not assume that all
the solutions explored here are the best; what we defend is that they
work to implement the "socialised architecture", merely to
demonstrate the idea's feasibility.

A model of communication that is not real time
In the modern cloud, every aspect of the underlying system is

under direct management. Because of this high degree of
replication, service level agreements typically guarantee cloud
operations at rates higher than 99%. To further ensure low latencies
in their data centers, these companies spend vast sums on the
installation of submarine cables and optic fiber. In a nutshell, this
top notch infrastructure is responsible for the reliability and safety
of cloud deployments [38]. But the "socialised architecture" can't
reap the benefits of the cloud because it runs on a
heterogeneous leased infrastructure comprised of different
hardware solutions. Instead, there are new issues that have
emerged:

• Disparate lag durations. A raspberry Pi connected to a
home network or a high performance data centre at a
university could both host the same service.

 By using asynchronous pattern interactions, the system is effectively
transformed into a reactive one. Then, each service can function
autonomously while still responding to system wide domain events.
The "socialised architecture" is an example of what is known as a
"event driven architecture". Therefore, there is now total separation
between the various services [41]. The use of a broker to aid in the
architectural design also has the following additional benefits:

• Provides a centralised location for configuring various
aspects of service delivery, such as delivery policies and
timeouts.

International Journal of Innovative Research in Science, Engineering and Technology, 2023, Vol.4, Issue 2, 1-10 Kumar R

4

Table 2. Requirements for circle.

The importance of enforcing integrity checks while responding to
events in the domain. When we run a query like "who publishes
the most?" the users and contents micro services must be in
sync, despite the fact that they each manage their own sets of
data.
The necessity of coordinating with third party services in
response to internal triggers. For instance, when notifying
subscribed services of newly published content via email.
The requirement for combining data from multiple service
queries. For instance, when pulling up a user's profile and seeing a
list of all of their published works.
Services need to be scaled up. Replicas for a service should be
easily added.

•

•

•

•

Poor connection stability. Quality of Service (QoS) policies in home
networks vary from those in ad hoc networks in data centres.
Additionally, they are impacted by the actions of other users who
consume bandwidth. A user who is also hosting a copy of a
"socialised service" might watch a video-streaming service at the
same time.
IP obfuscation and network address translators. These days,
public IP addresses for private networks are rare.
Most of them are hidden behind a NAT4, and their ISP can swap
out their shared IP address at any time. As a result, it's possible
that other services won't be able to send messages to your
"socialised service" instance, as they won't know how to find it.
Therefore, it's important to acknowledge that the "socialised
architecture" as a whole can't be relied upon. Since synchronous
communication protocols like REST and RPC require low latency,
network stability, and a means to enroute messages, we ruled
them out due to the difficulties we encountered when attempting
to implement them [39]. Thus, we expect that interactions will be
required among "socialised service" without the need for all
interlocutors to be present at the same time. Communication
patterns that are asynchronous are the obvious choice for such
situations. Message passing makes sense here, and when
coupled with the idea of a message broker, the issue can be
managed [40].
Since senders can keep working until a response arrives, if
necessary, latency times become less of a concern.
As long as the broker is operational, the network's instability is
mitigated. If a replica that could receive a message is no longer
connected to the network, the message will be forwarded to the
next available replica in the queue. For instance, if a network
partition prevented any replica from reaching the broker, the
message would still be stored locally until a replica became
available to process it.
The broker acts as a centralised agent, ensuring that messages
are properly routed to the appropriate services. The services can
always find the broker, which is hosted at a static address, even if
they are behind a NAT. Furthermore, the public IP change
procedure is made entirely open and accessible.

•

•

•

•

•

•

• Facilitates fewer service endpoint security measures by limiting
attack surface to the broker.

•
•

Offers a consolidated approach to gathering analytics data.
Multiple protocols and implementations are available as open
source for the broker's operation. In particular, the RabbitMQ
protocol will be highlighted [42].

Using queues to implement an asynchronous model requires
several design choices:

Figure 1. The system of queues.

The method can be illustrated with ease using FR4 of
circle. The contents service will directly communicate with the
users service in a classic REST (Representational State Transfer)
architecture to increase the author's publication count. However, in
our reactive proposal, the contents service only announces a new
post via an event upon receiving the publication. All subscribed
services will respond appropriately per the event's business
logic. This allows for the greatest possible service decoupling
while eliminating any delays caused by direct communication
[47-50].

Constructions based on micro services
By "partitioning the system" into modular software components

that can be independently "containerized" and hosted on external
servers, "socialised services" can be achieved. A key motivation for
the socialisation process is to have as small an impact as possible
when hosting a replica on the publicly leased hardware, so the
smaller the pieces, the better. No one is going to host a container if it
requires a significant amount of effort or resources. Therefore, it is
critical to "minimise" the replicas in terms of both physical size and
the resources they require.

Since "partition of the system" and "minimization of such
partitions" are both must haves, the obvious architectural solution is
micro services. According to Newman, they're "an approach to
distributed systems that promotes the use of small independent
services with their own life cycles, which collaborate jointly." Micro
services advocate a decoupled architecture in which individual
services talk to one another while striving for maximum cohesion
and minimum coupling. For example, the "socialised architecture"
aims for small services, which can be obtained by narrowing the
focus of the services to specific domains and use cases.

We are cognizant of the fact that size reduction is incidental to the
principles underlying the micro services architecture rather than its
primary focus. For us, however, this kind of simplification is what
ultimately decides which pattern to use. Additional benefits of micro
services for "socialised architecture" include:

Methodology for progress
The "socialised architecture" should not impose a particular

programming language, development framework, or any other
restriction necessary for the environment where "socialised services"
will be deployed, in contrast to the methods discussed in section 2.1.
In SETI home, for instance, the tasks can only be performed in the
specific conditions that the client application is given. Their services
need to be built with cutting edge software engineering for the
"socialised architecture" to be a viable option. In section 4.4, we'll talk
about how virtualization technology is a natural next step after
satisfying this mandate. The need to provide design guidelines for
the creation of "socialised services" is a second implication that
follows.

The "socialised architecture" relies on the concept of replicating
services across a network of personal computers to meet the
distributed nature of the network's computational demands. Micro
services are small, independently deployable software components
that provide core system functionality, such as business logic and a
persistent data store. However, as discussed in Section 4.1, the

International Journal of Innovative Research in Science, Engineering and Technology, 2023, Vol.4, Issue 2, 1-10 Kumar R

5

The broker then becomes the system's single weak link; if it goes
down, everything else in the system fails with it. However, this is
a well-studied issue, and replication and clustering mechanisms
are available in most implementations to help lessen the impact.

Adding the level of replication required to prevent
the aforementioned risk increases the cost of running the
broker. There are numerous ways to plan and carry
out the implementation of an asynchronous model. We are
confident that queuing systems are now a viable option due to
advances in technology. Messages, which are relatively simple
data structures, can be published and consumed in queuing
systems thanks to a queue that is managed by a broker. There
are many possible queue management policies; in Circle, we
used First-In, First-Out (FIFO). According to the CQRS pattern, a
message in the "socialized architecture" is a serialized object that
represents a command, a query, or an event. A queue will stand
in for each individual service [43-45].

However, we can also point out some drawbacks:

•

•

Each service's commands, queries, and events will be broadcast
as messages. They will be released in a special forum.
If multiple services subscribe to the same message, that
message will be replicated that many times. Each replica will add
items to the queue that represents this type of service, and this
queue will be linked to the publisher service's exchange. This
prevents users from competing services from intercepting each
other's messages.
Each type of command, query, or event will have its own
dedicated queue, but all replicas representing the same service
will use the same queue. In this way, multiple copies of an item
compete for the same message, with only one ultimately
receiving it. Therefore, adding more replicas to the queue that
represents the service being scaled eliminates the need for load
balancing. This is what is meant by "scalability by design."
Each copy of the service has its own queue for receiving
responses. This is because the name of the queue where the
executor service must respond is appended to the publication of
the query by each replica [46].

 The queue layout for implementing the suggested asynchronousis
model shown in Figure 1.

•

•

•

•

Resilience: When one service fails in micro services architecture,
only the dependent services are impacted, rather than the entire
system. This is significant for the "socialised architecture"
because, as we've established, the foundational infrastructure is
more prone to breakdown.
Scalability: Compared to monolithic architectures, micro services
are more scalable. It is sufficient to horizontally scale only the
services associated with an overloaded use case. In our setting,
this is preferable because it allows for quicker response times
when there are fewer copies of a service.
Easier deployment: A service can be deployed more quickly and
easily than a large programme. There are fewer moving parts, and
configurations can be simplified with less effort. This is crucial in
urging end users to set up replicas in their own communities [51].

 There are drawbacks to using micro services. To begin, the
inherent communication processes and the variety of failures they
may cause make their development significantly more difficult
than that of monolithic approaches. Second, there will be an
increase in the complexity of the testing procedure. Third, more
delays are experienced if synchronous communication patterns
the usual method for them are proposed. The latter shouldn't be
an issue here.

•

•

•

asynchronous model and the reactive nature of the architecture must
be factored into any such design. The Command Query
Responsibility Segregation (CQRS) pattern is one approach we're
considering for the micro services architecture. Furthermore, it is
helpful in addressing the right "separation of concerns," which is an
advantage when developing targeted micro services. We discuss the
pattern's main features and its applicability to the "socialised
architecture" below.

With CQRS in place, a system can accommodate two distinct
modes of user engagement: commands and queries. Actions that
alter the state of the system but yield no information are called
commands. Queries, on the other hand, do not alter the state of the
system but do provide the user with a result. Using distinct
processing models, the system will direct queries and commands
down distinct paths. However, CQRS introduces the idea of bus.
Handlers are subscribed to one or more of several buses that are
used to dispatch commands and queries. The bus typically only
handles calls to local functions that stand in for the handlers, leading
to a unified method. Due to the fact that our system is built on
separate modules, or micro services, this cannot be implemented.
Instead, we decided to build an API gateway through which users
could issue commands and retrieve results. Circle packages
commands and queries into an AMQP message, which the API
gateway can then help implement. The next step is for services to
sign up for these alerts. Classical handlers accomplish their goals
through the action taken in response to a message's arrival. The
essence of our CQRS implementation is depicted in Figure 2.

Figure 2. High level view of the CQRS pattern applied to
micro services.

In micro service architectures, the API Gateway is a typical
design pattern. In particular, it will be responsible for resolving
service addresses, balancing workloads, collecting data, and
translating protocols. Additionally, it could function as an
authentication entity while simultaneously reducing the security
exposure of the system. Negatives include that it is dependent
on existing infrastructure and has a single point of failure.

Each service, when following CQRS, acts as the "runner" of the
logic for its respective "use case." It is also beneficial for each
service to be replicable and not state owned. As a result, the
system can run multiple copies of the service without any extra
configuration. For the architecture to deal with all of those
limitations, each service must also perform the tasks below:

 To mimic the primary system features, we built a user service, a
content service, and a subscription service into circle. In Figure
4, we see a UML components diagram for one of the circle
services. It accurately reflects our definitive proposal for the
architecture's various services. Therefore, every service consists
of several constituent parts:

• An AMQP controller that coordinates all system wide
messaging. It responds to queries, commands, and events to
which it has subscribed.

Additionally, it broadcasts domain events used by the business
logic it enacts.

• The heart of the service, which contains the business logic
and controls the persistence of its individual parts. In the past, it
would register call backs in the amqp controller to be run as
required.

 The benefits of implementing CQRS are laid out in detail in
Fowler, M. To counteract the "anaemic" nature of CRUD systems,
Fowler recommends using CQRS first. In addition, Fowler stresses
CQRS' efficacy. However, due to the new way of thinking that is
required of the developer, CQRS does add complexity to the system.
In the case of a unit session, for instance, a command should be
executed whenever the system changes state to set up the session.
Therefore, the system should not return anything beyond the order's
acceptance. However, the proposed subscription mechanism is
required for the system to notify the user of the command's
outcome. Our asynchronous model is well-suited to accommodate
such a mechanism.

In a nutshell, the implementation of CQRS is expensive. However,
its speed and asynchronous character led to its proposal. As was
previously mentioned, we have to factor in the inherent hardware
infrastructure's inherent unpredictability. Because of this, we
assumed the best case scenario and worked backwards to ensure
maximum performance. Finally, our case study is not particularly
calculation intensive or time sensitive, but we did implement it
according to our architectural proposal so that we could get reliable
results and learn the appropriate lessons (Figure 3).

Figure 3. UML components diagram for the user service of circle.

Using virtualization in deployments
Based on section 4.3's premise of not forcing rigid setups,

virtualization-based solutions are preferred. The installation
procedures we use are also complicated and prone to mistakes
because of the presence of dependencies, configurations,
heterogeneous environments, or incompatible versions or systems.

Lightweight containers and other forms of virtualization could be
the answer to these issues. Virtualization at the OS level creates
impenetrable development and production environments. Since it is
not necessary to emulate the entire virtualized system, this allows
for a high degree of isolation while imposing almost no additional
burden on the system. We think this is a good answer for the
"socialised architecture":

• It provides a simple approach to packaging software with all
of its prerequisites and settings.

• It provides separate environments for programmes to run in.
• It almost never entails additional system overhead compared

to what would result from running the service locally.

 However, a sizable user base is crucial to the success of the
"socialised architecture" model. We can therefore argue that the
presence of processes that automatically deploy the "socialised
services" is a necessary condition for achieving this goal. The
circle rollout teaches us what challenges must be met to reach
that level of automation. The approach we took to deploying
circle and the problems we encountered are discussed in section
5.3.

International Journal of Innovative Research in Science, Engineering and Technology, 2023, Vol.4, Issue 2, 1-10 Kumar R

6

Create a service interface that provides the designated system
features. In CQRS terminology, API operations consist of
commands and queries.
Pay attention to the requests (commands) made of the API. After
checking the inputs, it'll either approve or decline the request. If
the order is relevant, it will be carried out at some point.
Send out domain events because you've been told to.
Domain events are generated by other services, so you can listen
for them and act accordingly.
Communicate with a persistence service whenever is necessary
for a command or query.

•

•

•

•

•

Evaluation
Circle's evaluation is crucial because it will shed light on

the correctness of the design decisions we made when shaping the
architecture and the viability of the technologies we chose. We

chose three widely used metrics response time, resource
demand, and latency to conduct this kind of evaluation (Table
3).

Code Success Tmean sequential (ms) Tmean concurrent (ms)

FR1 Yes 412.3 494.6

FR2 Yes 408.1 548.4

FR3 Yes 468.4 600.9

FR4 Yes 458.3 546.2

FR5 Yes 438.6 569.9

FR6 Yes 432.9 547.6

FR7 Yes 407.3 507.9

FR8 Yes 493.4 641.8

FR9 Yes 521.8 633.3

FR10 Yes 416.2 518.1

behaviour for nested queries results from the messages being sent
to the microservices in a linear fashion. In accordance with FR4, the
post-related query is held back until all user data has been collected.
This is the expected behaviour of GraphQL, but there are no simple
solutions.

The requirements for the containerized services resources are
listed in Table 4. It was determined that the notifications service
required the most resources. This is because of how it
communicates with the world outside of email. Since the containers
execution has little effect on the system as a whole, we can say
that the results are satisfactory. The outcomes were
accomplished by employing the same docker provided techniques
as the original execution.The average latency measured between
replicas and the message broker was 35 milliseconds. Considering
the sheer number of communications between replicas and the
broker, minimising this number is of paramount importance.

The execution times we measured for each requirement are
summarised in Table 2. Even with multiple requests being sent at
once, the average response time was less than 600 ms. We can
evaluate the following in light of these findings and a thorough
investigation, which is not presented here. With our knowledge, we
can assess the viability of any technological option. But here's what
we found out about GraphQL. Depending on the parameters
chosen, the results could be quite different. In the trials, we only
made a single data request per entity type. For instance, we did
not inquire about a user's related posts when conducting searches.
It would be impossible to make fair comparisons of results if
nested queries required the introduction of a second service. We
then ran more tests to determine the effectiveness of nested
queries. Then, we determined that the response time was
exponential. This is emphasised in FR3 in a unique way. It's
possible that response times here could go up to 6 seconds. This

Table 4. Resource demands (information obtained from docker).

Service RAM Mean demand (MB) CPU peak (%)

Users service 85 4.5

Content service 95 3

Notifications service 110 6

 As this is a major contributor to the system's efficiency, we
feel confident in the outcome.

Discussion
The iterative development process was used to create circle.

Once use cases were defined, we developed a few of them to
learn about the technologies at play and hone our proposed
model of asynchronous interaction. We then created a fully
functional prototype to test out these agile principles.
Subsequently, a shared library was established and the prototype
was refactored with domain driven design. Part of the project
was rethought and redone in accordance with software
quality best practices. The current version of our proof of concept
is the result of our most recent refactoring.Here we'll go over three
major considerations that arose during circle's creation.Decisions
about the implementation and design of "socialised services" are
central to understanding the evolution of this concept.

 However, choosing a number of technologies was a necessary
part of developing circle, a "socialised architecture" reference
application. The selections had to take into account the potential
design benefits of each option. The most intriguing technologies
chosen for circle are detailed.

Library
We learned the importance of code sharing between system

components while building the first prototype. We discovered some
ubiquitous domain objects, in particular the classes responsible for
facilitating interaction between services. For this reason, we
developed the circle core library, which is used by every service,
including the API gateway. There are three distinct levels to their
content:
• Layer of domains: Application relevant domain-specific objects.

One possible classification represents credentials, for instance.

International Journal of Innovative Research in Science, Engineering and Technology, 2023, Vol.4, Issue 2, 1-10 Kumar R

7

Table 3. The execution times we measured for each requirement are summarized.

• Layer of applications: Services logic is encapsulated in
classes. Examples include command, query, and event objects.

• The foundational system: Classes controlling service to
service communication and encapsulating the use of AMQP.

Using a shared library is a smart design choice that will cut down
on unnecessary repetition of code throughout the project. Circle's
implementation can be found at https://github.com/Pitazzo/circle.
The idea is that "socialised services" can reuse the infrastructural
layer, while the implementation of the other layers can be seen as
guidelines for designing the application's unique requirements.

GraphQL
Facebook's GraphQL is an API design pattern that aims to

succeed REST by fixing its flaws. As a query language for a server
provided data model, GraphQL runs on HTTP and has a more
robust interaction with web services than REST. GraphQL
provides three distinct means of communication:

•

•

•

Inquiries are used: The server allows for compound queries
that contain sub queries.
By means of mutations: The internal state of the server is
modified by these actions. They have the same
concatenation and parameterization capabilities as queries.
Utilising memberships: They're not quite queries, but they're
a unique data format all the same. However, information
can be dynamically updated by them. By way of illustration, if
you sign up for a web service for a "publicly traded" asset, you
will always know what that asset is currently worth.
Circle employs GraphQL as its API gateway communication
protocol.

 GraphQL was selected because of its semantic richness and
because of its compatibility with the Command Query Responsibility
Segregation (CQRS) design pattern. First, the pattern driven structure
separates commands from queries. Subscriptions, on the other hand,
improve its compatibility with CQRS. CQRS complicates the
management of API clients because it offers no alternative for
handling asynchronous responses to orders. Adding "polling"
mechanisms is a common workaround that often enhances the user
experience. The term "polling" refers to the practice of triggering the
service at regular intervals in order to create a false sense of
synchrony. From a design perspective, this solution is adequate but
lacks efficiency and elegance. Subscriptions in GraphQL, however,
provide the following workaround. Subscribing to a query in GraphQL
that promises the completed result of a command and then receiving
it synchronously does not contradict CQRS principles. To achieve
this, however, we need to make use of what are called "domain
events." The completion of an order's execution then causes the
publication of a "domain event" communicating this information. The
API Gateway will be alerted to the arrival of this event and will then
extract the payload result. When the API Gateway receives the
notification, it will update the client's subscription, which was created
after the command was sent. Therefore, "polling" mechanisms are
unnecessary, as the client can simply wait for the command's result.
Figure 4 illustrates the described mechanism.

Figure 4. API gateway and client interaction, using GraphQL
subscriptions.

Containers and security
A "socialised application" should have its dependencies,

configurations, and code compressed to ensure that it runs equally
well regardless of the environment and without any intervention from
the user. You can run multiple copies of the system with just one
shell command using containers. Docker, a widely adopted and
relatively lightweight virtualization solution, is what circle employs to
host all of its services. The Figure 5 commands can be used to
initiate these services. The images will begin running immediately
after they have been downloaded. Without any intervention from the
user, they are kept in sync with the broker and the database. One
service at a time, one copy of each service, or multiple copies of the
selected services can be run by the user. Figure 6 shows the system
in its deployed state.

Figure 5. Commands for executing system services.

International Journal of Innovative Research in Science, Engineering and Technology, 2023, Vol.4, Issue 2, 1-10 Kumar R

8

Figure 6. Circle deplyoment view.

Using external infrastructure raises security concerns for the
proposed deployment model. In fact, we're handing over the source
code along with the necessary credentials and business
logic. We first suggested obfuscation, or a cryptographic rewrite
of the code. In this way, the code can be successfully executed
but cannot be obtained or modified via reverse engineering.
Regarding the credentials, bit wise operations are applied to
the literals in the code representing them. It is not
recommended practice to incorporate credentials into the code.
However, we suggested that in order to employ obfuscation. Good
practice dictates that they be stored in a dedicated configuration
file alongside the code. At compile time, we used an external file to
automatically replace the literals. Obfuscation may serve as a
stopgap measure, but it's not enough for widespread use in the
industrial sector.

Conclusion

The main contributions of this work are:

• An unrestricted plan for breaking the cloud monopoly,
based on software engineering concepts like patterns and
asynchronous interactions.

• The creation of a functioning social network that
demonstrates most of the theoretical underpinnings and
existing issues.

• Despite the fact that a lot of work was put in from both ends, we
know that a lot more is needed to make the "socialised
architecture" a reality. Consequently, the open innovation
field mentioned in the introduction may be an appropriate
means of speeding up the suggested ideas as inputs for
businesses hoping to increase internal innovation. We address
some outstanding, crucial concerns below.

• One of the biggest problems with "socialised architecture" is
figuring out how to divide up the persistence. While our work is
motivated by a desire to reclaim "data sovereignty," we must
rely on cloud services to demonstrate the viability of our proof
of concept.

• Designing for user authentication in a "socialised architecture"
is a pressing concern. Please provide your responses to the
following inquiries. Where, between the API Gateway and the
services, should authentication take place? Is it necessary to
keep the authentication service private?Moreover, what does
this mean?

• At present, as indicated by CQRS, order parameters are
validated by the services that receive them. However,
incorporating the API Gateway into the procedure would be
exciting. There may be two benefits to this. First, response
times would increase because there would be no downtime
between services. Second, since the broker can persist services,
there would be no need to have them ready to process a
message immediately upon its arrival. As a result, the system
was able to process requests from clients without regard to the
availability of replicas.

• Nested GraphQL queries are slow, as discovered in section 4.5
of the prototype evaluation. It would be intriguing to find a
way to automatically parallelize such queries, or to provide
design guidelines to reduce the number of instances in which
such parallelization is not possible.

• Future lines of work must necessarily address the previous
pending issues. Concretely:

• Manage distributed transactions and consensus algorithms
in a conventional fashion, as in Ongaro, D, and
"socialise" the persistence alongside the replicase

•

•

We can use block chain as a distributed ledger and other
decentralised hosting solutions like the interplanetary file system
to achieve this.
According to Tahirkheli, A.I, authentication isn't the only
security issue that needs to be addressed.

• Another area where development is needed to guarantee the
long-term reliability of "socialised services" is fault tolerance.

Finally, it goes without saying that our proposal is inferior to state
of the art cloud services in terms of speed, safety, and
dependability. The key takeaway from this study, however, is the
realisation that an alternative to the current cloud exists and
has the potential to grant the internet greater autonomy.

References

1. Florea, D., & Florea, S. "Big data and the ethical implications of
data privacy in higher education research." Sustainability.
12.20 (2020): 8744.

2. Antonio, A., & Tuffley, D. "The gender digital divide
in developing countries." Future Int. 6.4 (2014):673-687.

3. Columbus, L. "83% of enterprise workloads will be in the cloud
by 2020." (2018).

4. Antova, L., et al. “Rapid adoption of cloud data warehouse
technology using datometry hyper-Q.” In proceedings of
the 2018 international conference on management of
data.(2018):825-839.

5. Vargas, C. "Cloud market share report: Aws vs. azure
vs. google cloud 2019: Mcafee." (2020).

International Journal of Innovative Research in Science, Engineering and Technology, 2023, Vol.4, Issue 2, 1-10 Kumar R

app

van der Meulen, R. “Understanding cloud adoption in
government.” (2018).
Faragardi, H. R. "Ethical considerations in cloud computing
systems." Proceedings, IS4SI 2017, 12-16 June 2017,
Gothenburg, Sweden. 166.
Chesbrough, Henry W. "The era of open innovation." Managing
innovation and change. 127.3 (2006):34-41.
Baierle, I. C., et al. “Influence of open innovation variables on
the competitive edge of small and medium enterprises.” J
Open Innov: Technol Mark Complex. 6.4 (2020):179.
Docker, I. "Docker: Empowering app development for
developers." (2020).
Mengistu, T.M., & Che, D. “Survey and taxonomy of volunteer
computing.” ACM Comput Surv. 52 (3) (2019):1-35.

6.

7.

8.

9.

10.

11.

https://www.mdpi.com/2071-1050/12/20/8744
https://www.mdpi.com/2071-1050/12/20/8744
https://www.mdpi.com/1999-5903/6/4/673/htm?utm_content=bufferd7352&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
https://www.mdpi.com/1999-5903/6/4/673/htm?utm_content=bufferd7352&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/?sh=476eede06261
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/?sh=476eede06261
https://dl.acm.org/doi/abs/10.1145/3183713.3190652
https://dl.acm.org/doi/abs/10.1145/3183713.3190652
https://www.mdpi.com/1999-5903/6/4/673/htm?utm_content=bufferd7352&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
https://www.gartner.com/smarterwithgartner/understanding-cloud-adoption-in-government
https://www.gartner.com/smarterwithgartner/understanding-cloud-adoption-in-government
https://www.mdpi.com/2504-3900/1/3/166
https://www.mdpi.com/2504-3900/1/3/166
https://www.sciencedirect.com/science/article/pii/S2199853122011544
https://www.sciencedirect.com/science/article/pii/S2199853122011544
https://dl.acm.org/doi/abs/10.1145/3320073
https://dl.acm.org/doi/abs/10.1145/3320073

EE.

12. Durrani, M. N., & Shamsi, J. A. "Volunteer computing:
Requirements, challenges, and solutions." J Netw Comput Appl. 39
(2014):369-380.

13. Facebook. GraphQL—A Query Language for Your API.
2012–2021.

14. Kirby, G., et al. "An approach to ad hoc cloud computing ."
Arxiv Preprint Arxiv. 1002. (2010):4738.

15. Che, D., & Hou, W. C. "A novel “Credit Union" Model of cloud
computing." Digital information and communication
technology and its applications: International conference,
DICTAP 2011, Dijon, France, June 21-23, Proceedings, Part
I. Springer Berlin Heidelberg, 2011.

16. Mengistu, T., et al. "A "no data center" solution to cloud
computing." 25-30 June 2017, Honololu, HI, USA, 2017 IEEE
10th international conference on cloud computing IE
(2017):714–717.

17. McGilvary, G. A., Barker, A., & Atkinson, M. "Ad hoc cloud
computing." 27 June 2015-02 July 2015, New York, NY,
USA, IEEE 8th international conference on cloud
computing. 2015: 1063-1068.

18. Ryden, M., et al. "Nebula: Distributed edge cloud for data
intensive computing." 11-14 March 2014, 2014 IEEE
international conference on cloud engineering. Boston,
MA, USA. (2014):
57-66.

19. Babaoglu, O., Marzolla, M., & Tamburini, M. "Design and
implementation of a p2p cloud system." Proceedings of the
27th Annual ACM Symposium on Applied Computing.
(2012).

20. Beberg, A. L., & Pande, V. S. "Storage home: Petascale
distributed storage." 26-30 March 2007, 2007 IEEE
International Parallel and Distributed Processing
Symposium, Long Beach, CA, USA.(2007):1-6.

21. Qin, A., et al. "Fatman: Building reliable archival storage
based on low ost volunteer resources." J Comput Sci
Technol. 30 (2015):273-282.

22. Neumann, D., et al. "STACEE: Enhancing storage clouds using
edge devices." Proceedings of the 1st ACM/IEEE
workshop on Autonomic computing in economics.
(2011):19-26.

23. Al Noor, S., Hossain, M. M., & Hasan, R. “SAS cloud: Ad hoc
cloud as secure storage.” 08-10 October 2016, In Proceedings
of the 2016 IEEE international conferences on Big Data and
Cloud computing (BDCloud), Social Computing and
networking (SocialCom), Atlanta, GA, USA 2016: 8-10
October. (2016).

24. Mohaisen, A., et al. "Social cloud: Using social networks for
building distributed computing services." Arxiv Preprint Arxiv.
1112.2254 (2011).

25. Chard, R., Bubendorfer, K., & Chard, K. "Experiences in the
design and implementation of a social cloud for volunteer
computing." IEEE 8th International Conference on E-Science,

8-12 October 2012, Chicago, IL, USA (2012).
26. Caton, S., et al. "A social compute cloud: Allocating and

sharing infrastructure resources via social networks." IEEE
transactions on services computing, 28 January 2014. 7.3
(2014): 359-372.

27. Kuada, E. "A social network approach to provisioning and
management of cloud computing services for enterprises." (2014).
25-30.

28. McMahon, A., & Milenkovic, V. "Social volunteer
computing." Int J Syst Cybern Inform. 9.4 (2011):34-38.

29. Anderson, D. P. "Globally scheduling volunteer computing."
Future Int. 13.9 (2021): 229.

30. Xu, L., et al. "Task assignment algorithm based on trust in
volunteer computing platforms." Information. 10.7 (2019):244.

Cite this article: Kumar R. "A Novel Cloud Computing Software Engineering Strategy Based on "Socialised Architecture". Int
J Innov Res Sci Eng Technol, 2023, 4(2), 1-10.

International Journal of Innovative Research in Science, Engineering and Technology, 2023, Vol.4, Issue 2, 1-10 Kumar R

(MRPFT) 10

Waheed, A., et al. "Volunteer computing in connected vehicles:
Opportunities and challenges." IEEE Network. 34.5
(2020):212-218.
Cao, Xiaowen, et al. "Joint computation and communication
cooperation for energy efficient mobile edge computing." IEEE
Int Thin J. 6.3 (2018): 4188-4200.
Buschmann, F., et al. "Software Patterns." (1996).
Richards, R., & Richards, R. "Representational state transfer
(rest)." Pro PHP XML and web services. (2006):633-672.
Tanenbaum, A. S. “Distributed systems principles and
paradigms.” (2007).
Taylor, H. “Event-driven architecture: How SOA enables the real
time enterprise.” Pearson Education India, 2009.
RabbitMQ, A. "Messaging that just works-rabbitmq." (2020).
Newman, S. “Building micro services.” Designing fine grained
systems, 1st edition. O’Reilly Media: Newton, MA, USA, 2015;
280.
Kumar, A. "Cqrs (Command Query Responsibility Segregation)."
Independently Published (2019).
OASIS. AMQP-Advanced Message Queuing Protocol. (2020).
Evans, E. “Domain driven design: Tackling complexity in the heart
of software.” Addison-Wesley Professional. (2004).
Ongaro, D., & Ousterhout, J. "In search of an understandable
consensus algorithm." 2014 USENIX annual technical
conference. (2014):305-320.
Chen, Yongle, et al. "An improved P2P file system scheme based
on IPFS and block chain." IEEE international conference on big
data (big data), 11-14 December 2017, Boston, MA, USA.
(2017):2652–2657.
Tahirkheli, A. I., et al. "A survey on modern cloud computing
security over smart city networks: Threats, vulnerabilities,
consequences, countermeasures, and challenges." Electronics.
10.15 (2021):1811.
Mysliwiec, K. "NetsJS-A progressive Node. js framework for
building efficient, reliable and scalable server-side
applications." (2017).
OpenJS foundation. “NodeJS.” (2020).
Microsoft. “TypeScript-typed javascript at any scale.” (2012).
Alistair, C. “The pattern: Ports and adapters (Object
structural).” (2020).
Open Source-Supported by Sponsors. “TypeORM object
relational mapping.” (2020).
Fowler, M. “Patterns of enterprise application architecture:
Pattern Enterpr Applica Arch.” Addison-Wesley. (2012).
Obe, R. O., & Hsu, L. S. “PostgreSQL: Up and running: A practical
guide to the advanced open source database.” O’Reilly Media,
Inc. (2017).

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

https://www.sciencedirect.com/science/article/abs/pii/S1084804513001665
https://www.sciencedirect.com/science/article/abs/pii/S1084804513001665
https://arxiv.org/abs/1002.4738
https://link.springer.com/chapter/10.1007/978-3-642-21984-9_59
https://link.springer.com/chapter/10.1007/978-3-642-21984-9_59
https://ieeexplore.ieee.org/abstract/document/8030657
https://ieeexplore.ieee.org/abstract/document/7214163
https://ieeexplore.ieee.org/abstract/document/7214163
https://ieeexplore.ieee.org/abstract/document/6903458
https://ieeexplore.ieee.org/abstract/document/6903458
https://dl.acm.org/doi/abs/10.1145/2245276.2245357
https://dl.acm.org/doi/abs/10.1145/2245276.2245357
https://ieeexplore.ieee.org/abstract/document/4228400
https://ieeexplore.ieee.org/abstract/document/4228400
https://dl.acm.org/doi/abs/10.1145/1998561.1998567
https://dl.acm.org/doi/abs/10.1145/1998561.1998567
https://ieeexplore.ieee.org/abstract/document/7723671
https://ieeexplore.ieee.org/abstract/document/7723671
https://arxiv.org/abs/1112.2254
https://arxiv.org/abs/1112.2254
https://ieeexplore.ieee.org/abstract/document/6404452
https://ieeexplore.ieee.org/abstract/document/6404452
https://ieeexplore.ieee.org/abstract/document/6727497
https://ieeexplore.ieee.org/abstract/document/6727497
https://vbn.aau.dk/en/publications/a-social-network-approach-to-provisioning-and-management-of-cloud-2
https://vbn.aau.dk/en/publications/a-social-network-approach-to-provisioning-and-management-of-cloud-2
https://ieeexplore.ieee.org/abstract/document/8030657
https://ieeexplore.ieee.org/abstract/document/9183791
https://ieeexplore.ieee.org/abstract/document/9183791
https://ieeexplore.ieee.org/abstract/document/8488502
https://ieeexplore.ieee.org/abstract/document/8488502
https://link.springer.com/chapter/10.1007/978-1-4302-0139-7_17
https://link.springer.com/chapter/10.1007/978-1-4302-0139-7_17
https://www.oreilly.com/library/view/building-microservices/9781491950340/
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://ieeexplore.ieee.org/abstract/document/8258226
https://ieeexplore.ieee.org/abstract/document/8258226
https://www.mdpi.com/2079-9292/10/15/1811
https://www.mdpi.com/2079-9292/10/15/1811
https://www.mdpi.com/2079-9292/10/15/1811

	Contents
	A Novel Cloud Computing Software Engineering Strategy Based on "Socialised Architecture
	Corresponding Author*
	Copyright:
	Abstract
	Introduction
	Purpose statement and review of related work

	Materials and Methods
	Results
	A model of communication that is not real time
	Constructions based on micro services
	Methodology for progress
	Using virtualization in deployments
	Evaluation

	Discussion
	Library
	GraphQL
	Containers and security

	Conclusion
	References

