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Brain Hemorrhage: Incidence and Pathophysiology
Brain hemorrhage stroke occurs in approximately 20% of 

all patients with a stroke [1-3]. There are two main categories of 
hemorrhagic stroke, intracranial hemorrhage including epidural 
hematoma, subdural hematoma and subarachnoid hemorrhage (SAH), 
and intracerebral hemorrhage (ICH) including intraparenchymal 
hemorrhage (IPH) and intraventricular hemorrhage (IVH). The terms 
ICH and hemorrhagic stroke are often used interchangeably, but they 
can be distinguished from hemorrhagic transformations normally 
associated with ischemic stroke. 

ICH is associated with a rapid and higher mortality rate than 
ischemic stroke and substantial brain damage occurs through multiple 
mechanisms. The 30-day mortality rate for ischemic stroke is 8-12%, 
whereas hemorrhagic stroke is estimated to be around 50% [4-7]. 
Moreover, despite presenting with similar focal neurologic deficits, 
patients with hemorrhagic stroke tend to be more severe than patients 
with ischemic stroke and less than 20% of hemorrhagic stroke 
patients regain functional independence. There are still no specific 
treatments for most types of ICH [7,8]. Patients with ICH may require 
neurosurgical evaluation to detect and repair the source of bleeding, 
and remove the clot to prevent expansion and secondary repercussions 
such as ischemic damage. 

There are many causes for ICH, which generally occurs in small 
arteries or arterioles and is commonly due to hypertension, intracranial 
vascular malformations or cerebral amyloid angiopathy [9]. The 
pathophysiology of ICH is triggered by bleeding directly into the 
brain parenchyma, often as a result of leakage from small intracerebral 
arteries that have been compromised. Vascular damage due to cerebral 
amyloidosis primarily affects the elderly and represents up to 10% 
of hemorrhagic strokes. In addition, commonly used therapeutics 
such as anticoagulants, platelet inhibitors [10,11] and thrombolytics 
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(tissue plasminogen activator; tPA, Alteplase™) typically used to treat 
acute myocardial infarction (AMI) or acute ischemic stroke (AIS), in 
particular, can lead to iatrogenic hemorrhagic stroke and a prior history 
of stroke, per se, also represents an important risk factor for ICH [12]. 

Preclinical Models and Translational Studies
An extensive amount of funding has been dedicated to preclinical 

research studies to identify mechanisms involved in ICH and to 
subsequently test strategies in animal models, not only for ICH 
reduction, but also for clinical improvement. Three of the most 
commonly used animal models are briefly reviewed here: collagenase 
injection model, whole-blood model and embolization-induced 
hemorrhage. There is significant scientific value in using a combination 
of 2 or more of the models to develop mechanism-based treatments 
strategies to be applied to stroke patients.

The collagenase model has been used by many leading hemorrhage 
groups including Lyden and colleagues [13-15] and Rosenberg et al. 
[16-18]. Briefly, the injection of the membrane protease, collagenase 
into the striatum results in dissolution of the membrane matrix that 
supports cells resulting in the formation of a hematoma. It appears that 
Type IV collagen in the basal lamina is the substrate for the bacterial 
collagenase used in most studies [19,20]. This model has been used by 
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many research laboratories as a model of ICH or SAH [13-16,18,19,21-
26]. Many investigators target cortical substructures such as the caudate 
putamen in this model and doing so allows for a behavioral function 
measures due to a lesion in the nigrostriatal pathway. A lesion in the 
pathway produces neuronal degeneration and behavioral asymmetry 
that can be detected in rodents as rotational behavior. The advantages 
allow investigator to study treatments that can limit the collagenase-
induced bleeding response and hematoma expansion. The model 
is particularly relevant to the clinical condition because continued 
bleeding occurs in 14–20% of all ICH patients and lasts for over 6 h 
in 17% of cases [27,28]. However, the drawbacks are that there is no 
underlying vascular pathology, and bleeding results from the rupture 
of many vessels, whereas rupture of a small, deep-penetrating artery in 
humans. 

In the whole-blood or blood product injection model, an 
animal’s own blood (autologous) or donor blood (non-autologous) 
is injected directly into the brain tissues [13-16,18,21-24,29-37], also 
using the caudate putamen in many cases. Zhang and colleagues 
have successfully used the model to identify target mechanisms for 
treatment [38-41]. The advantage of the whole-blood model is that only 
blood is introduced into the model system. The drawbacks are the lack 
of underlying vascular pathology and vessel rupture, which is normally 
seen in the human stroke population. 

An embolism-based model has also been used to study interventions 
that can reduce ICH. The rabbit large clot embolism model (RLCEM) 
has been used extensively to decipher mechanisms involved in 
hemorrhage and for the preclinical development of pharmacological 
strategies that may reduce embolism- and tPA-induced hemorrhage 
[5,42-47]. The favorable characteristics of the RLCEM include the 
study of 3 types of ICH: hemorrhagic infarction, petechial hemorrhage 
and parenchymal hemorrhage (PH) [45] regardless of whether or 
not thrombolytics are administered. The symptomatic PH defined as 
large collections of blood in the parenchyma without intervention into 
brain tissue, originally is thought to occur consequent to reperfusion 
into a devitalized artery [48]. In the model, no specific structure can 
be targeted because the clot is injected through an indwelling carotid 
catheter and becomes lodged in one or more vessels in brain, depending 
on whether the clot remain intact or fragments. Most often, the result 
is blockage of the middle cerebral artery (MCA), which causes a large 
reduction of cerebral blood flow to one brain hemisphere. In essence, 
the RLCEM in an embolic stroke model with a significant hemorrhage 
component. This model has been used by many research laboratories as 
a model of ICH and tPA-induced ICH [44-47,49,50]. 

Inflammatory Reactions and Vascular Damage
Coagulation factors 

As a consequence of brain hemorrhage, enzymes involved in blood 
clotting and clot lysis are produced [47,51-53]; however, many of them 
have potential toxicities. Primary hemostasis is initiated when vascular 
injury triggers adherence of platelets to proteins within in the vascular 
endothelium using glycoprotein (GP) Ia/IIa receptors. This is followed 
by platelet aggregation by means of docking proteins or sites to form 
the primary hemostatic clot. The sequence of platelet aggregation is 
mediated by von Willebrand factor, which forms links between the 
platelet GP Ib/IX/V and collagen [54-56]. Once they bind and are 
thereby activated, platelets undergo structural and conformational 
changes and begin platelet-platelet aggregation via the GP IIb/IIIa 
receptors. Secondary hemostasis, which is comprised of two specific 
pathways, the “intrinsic” or “contact activation” pathway and the 

“extrinsic” or “tissue factor” pathway, results in local activation of plasma 
coagulation factors and the generation of a fibrin clot that reinforces the 
platelet aggregate. The classical model of blood coagulation involves 
a complex “cascade” of zymogen activation reactions involving 
coagulation factors, 6 in the intrinsic pathway (factors VIII, IX, XI, XII, 
prekallikrein, and high-molecular weight kininogen), 1 in the extrinsic 
pathway (factor VII), and 4 in a common pathway (factors II, V, X, 
and fibrinogen). The main role of the extrinsic pathway is to generate 
thrombin to convert soluble fibrinogen into insoluble strands of fibrin 
which is the backbone of a clot. Following damage to the blood vessel, 
Endothelium Tissue Factor (ETF) is released, forming a complex with 
Factor VIIa, which then activates Factor IX and X. Factor VII is a 
coagulation factor in the extrinsic coagulation pathway and is part of a 
series of hemostatic defense mechanisms [55,56]. Factor VII itself can 
also be activated by thrombin leading to a cyclic complex including the 
activation of prothrombin to thrombin. Factor VIIa is present in excess 
of any other activated coagulation factor could be a potential target 
for ICH therapy. However, clinical results in hemorrhage trials with 
Novoseven have been quite disappointing [57], primarily because there 
was an increased incidence of thromboembolism causing ischemic 
damage and clinical deficits.

Thrombin 

Thrombin is an essential component of the coagulation cascade and 
it is produced in the brain immediately after ICH. Recent research has 
suggested that thrombin is a pleiotropic molecule that causes vascular 
damage, an inflammatory response, oxidative stress, and also has 
direct cellular toxicity, which is mediated in part by protease activated 
receptors (PARs) [58-60]. Some studies have noted that thrombin at 
high concentrations can activate potentially harmful pathways [51, 
61,62]. Direct infusion of large doses of thrombin into the brains causes 
inflammatory-cell infiltration and brain edema formation partly due 
to the direct opening of the blood brain barrier (BBB). A recent key 
study [63] showed that thrombin mediates endothelial permeability 
and the introduction of thrombin in brain causes vascular damage, 
a result that can be blocked by the small molecule direct thrombin 
antagonist argatroban. Moreover, thrombin stimulates PARs expressed 
on microglia/macrophages to activate these cells via recruitment of 
mitogen-activated protein kinases (MAPKs), and produces several 
inflammatory mediators, which contribute to edema formation 
through disruption of the BBB [61]. Similarly, another recent study has 
suggested that thrombin induced edema is mediated by stimulating 
PARs to activate src family kinases, which are a family of proto-
oncogene tyrosine kinases [64]. Src family kinase members mediate BBB 
permeability changes and brain edema by phosphorylating membrane 
metalloproteinases (MMP’s), tight junction proteins and other BBB-
related proteins [65]. Thus, these kinases may be appropriate targets for 
further development to attenuate the downstream detrimental effects 
of thrombin.

Cytokines 

The major inflammatory cells that are activated and accumulate 
within the brain after ICH are blood-derived leukocytes, macrophages, 
and resident microglia [66,67]. Microglia are believed to be the first 
non-neuronal cells to react following CNS injury. After brain injury, 
microglia are activated to undergo morphologic including upregulation 
of pro-inflammatory cytokines, migration, proliferation and phagocytic 
behavior [68]. Microglia, “brain macrophage”, which when activated 
release a variety of cytokines [69-71], reactive oxygen species (ROS) 
[72-74], and other potentially toxic factors, suggesting that activated 
microglia/macrophages might contribute to hemorrhage-induced 
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early brain injury [26,75]. Infiltrating leukocytes are also believed to 
play a role in ICH-induced brain injury. Neutrophils are the earliest 
leukocyte subtype to infiltrate into the hemorrhagic brain, and these 
may damage brain tissue directly also by producing ROS, releasing pro-
inflammatory proteases [76], and modulating BBB permeability [77]. 
Substantial evidences have suggested that leukocytes/macrophages and 
activated microglia are major CNS sources of cytokines, chemokines, 
prostaglandins, proteases, and other immunoactive molecules after 
ICH [66,78-81]. 

Many investigators have studied cytokine changes after ICH 
and have shown that two primary molecules, TNF-α and IL-1β are 
elevated in various experimental models of brain injury. TNF-α is a 
pleiotropic cytokine that received a lot of attention because it has 
multiple biologic activities that are temporally organized including 
the stimulation of acute phase protein secretion, vascular permeability 
and post-ICH brain edema formation [82,83]. TNF-α expression is 
increased in response to ICH when presented with either autologous 
blood or thrombin [83,84,85]. TNF-α also mediates hemorrhage in 
brain following embolic strokes [86]. TNF-α and its family of receptors 
represent possible interventional targets to reduce hemorrhage damage 
or hemorrhage-induced ischemic damage [87,88]. Like TNF-α, there is 
a persistent increase in IL-1β observed in brain following autologous 
blood injection [80,89]. Similarly, expression of the TNF-α receptor 
and IL-1β were both upregulated following intrastriatal blood infusion 
[90]. TNF-α and its family of receptors and IL-1β represent possible 
interventional targets to reduce hemorrhage damage or hemorrhage-
induced ischemic damage [87,88].

Free radicals and vascular damage

Free radicals have been a focal point in the development of treatments 
for stroke. They are reactive molecules that have one or more unpaired 
electrons. These reactive species often are divided into two groups, ROS 
and reactive nitrogen species (RNS). ROS usually refers to superoxide, 
hydrogen peroxide (H2O2), hydroxyl radical, singlet oxygen, whereas 
an RNS can include nitric oxide (NO) and peroxynitrite. Free radicals 
and their related non-free radical reactive species have been implicated 
in stroke pathophysiology as an important contributor to cell and tissue 
injury [91-93]. Increased levels of free radicals can cause damage to 
virtually all cellular components, including DNA, lipids, and proteins, 
which then leads to injury of neurons, glial cells, blood vessels and the 
vasculature. Free radicals can exert effects directly on cells and also 
interact with various cellular molecular pathways which contributes to 
the development of brain edema and cell death [66]. 

ICH is also associated with robust induction of heme oxygenase 
(HO) in microglia/macrophages, and the enzyme catalyzes degradation 
of heme into iron, carbon monoxide (CO), and biliverdin, which is 
then converted to bilirubin by biliverdin reductase [94]. ICH causes 
iron accumulation in the brain and non-heme iron has been shown 
to increase threefold after ICH in rats [95]. Furthermore, intracerebral 
infusion of iron causes brain injury and deferoxamine reduces ICH-
induced brain damage, suggesting that iron plays an important part in 
brain injury after ICH [96-98]. Iron and other products contribute to 
pathological changes such as increase in oxidative stress, formation of 
edema, infiltration of neutrophils, and induction of neuron death [61]. 
Moreover, Iron and iron-related products catalyze hydroxyl radical 
production and lipid peroxidation [99,100], which expose the brain 
cells to increased levels of oxidative stress. The production of ROS is an 
inevitable consequence of normal oxidative metabolism, but high ROS 
levels can be lethal [101-103] and must be regulated because they are 
involved in a series of processes such as contributing to brain edema 

by triggering the induction and activation of MMP family members 
both directly and indirectly [92]. The direct process may involve the 
oxidation or nitrosylation of MMP, resulting in MMP activation 
[104]. The indirect process may involve redox-sensitive elements of 
transcription factors such as nuclear factor kappa-light-chain enhancer 
of activated B cells (NF-κB) and activator protein 1 (AP-1), which is 
known to be an integral part of the binding sites for MMP transcription 
[105,106]. Excessive hydrogen peroxide production has been suggested 
to induce MMP-1 mRNA expression in fibroblasts, and sublethal 
exposure to hydrogen peroxide has been found to increase the 
expression and activation of MMP-2 in human endothelial cells [107]. 
The treatment of fibroblasts with xanthine/xanthine oxides results 
in the induction of MMP-2 and MMP-9; furthermore, superoxide-
stimulated extracellular signal-regulated kinase activation has been 
shown to mediate MMP-9 induction in vascular smooth muscle cells 
[108]. Studies using genetically manipulated mice have suggested that 
superoxide and/or hydrogen peroxide are involved in the induction 
and activation of MMPs [109]. These studies have strongly implied that 
superoxide and/or hydrogen peroxide might mediate BBB disruption 
through the activation of MMPs. Studies have also shown that 
excessive production of superoxide radicals result in increased water 
and sodium content in the brain and the extravasation of Evans blue, 
suggesting the development of vasogenic edema [110]. Moreover, the 
superoxide radical has been identified as the primary radical involved 
in increased vascular permeability and edema development in various 
disease models [111]. Based on the amount of evidence, it is clear that 
free radicals, and the resulting oxidative stress, are involved in BBB 
disruption and brain injury after stroke. The challenging task in the 
future is to how to attenuate free radical damage at the cellular and 
molecular level. 

Membrane metalloproteinases in vascular damage: a 
potential drug target

This section will continue with the theme of MMPs, which are a group 
of important proteolytic enzymes whose catalytic mechanism involves 
a metal. MMPs are zinc- and calcium-dependent endopeptidases 
which are known to degrade many components of the extracellular 
matrix (ECM) including fibronectin, laminin, proteoglycans and type 
IV collagen [112,113]. They have been categorized into four groups 
of enzymes based on protein structure: collagenases, stromelysins, 
gelatinases, and membrane-type MMPs [114]. These enzymes are 
secreted as a latent form, but once they become activated they regulate 
many physiological and pathological processes. Cytokines, such as 
TNFα and IL-1 induce the transcription of MMP-3 and MMP-9 
which are important in both acute and chronic neuroinflammation. In 
addition, several activation mechanisms have been suggested including 
other proteases and free radicals [104,115]. The activity of MMPs might 
be controlled by free radicals, either through activation of the latent 
forms or by induction of mRNA through signaling via the nuclear 
factor-kappaB site [116]. 

Many investigators have emphasized the role MMP-2, 3, 9, and 
12 in ICH [18,22,25,75,90,117]. Firstly, a study has demonstrated that 
activation of MMP-2 and MMP-9 was increased after collagenase-
induced ICH in rats[18]. Subsequently, another study has indicated 
that brain MMP-2, 3, 7, 9 and 12 mRNA levels were increased in 
collagenase-induced hemorrhage rat model [75]. Furthermore, a 
dramatic increase of MMP-9 activity was observed by gel and in situ 
zymography in collagenase-induced hemorrhage rat model [22]. 
Moreover, early increases in MMP-9 mRNA and activity have been 
confirmed in other animal ICH models including mouse [25] and pig 
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[117]. The findings are consistent and show that MMP’s were regulated 
by hemorrhage and also played a crucial role in vascular damage. 
Similarly, several clinical studies have reported an evaluation of MMP-
9 levels in blood of patients with ICH [118-120]. Taken together, these 
data support the view that some of the MMPs, especially MMP-3, 9, 
and 12, might play an important role in the pathophysiology of ICH.

Cellular components of the BBB include endothelium, pericytes/
microglia and the perivascular astrocytic processes. Previous studies 
have shown that astrocytes, neurons, oligodendroglia, endothelial cells, 
pericytes, and microglia produce MMPs [121,122]. Mixed microglia 
and astrocytes in culture produce an active form of MMP-9, whereas 
astrocytes alone in culture induces proMMP-9 but failed to produce 
the active form of MMP-9. Moreover, immunostaining of mixed glial 
cultures showed that MMP-3 was expressed by microglia, but not by 
astrocytes. This finding suggested that the microglia-derived MMP-
3 was critical for activation of the MMP-9 during the inflammatory 
response. Activation of the proMMPs is central in the proteolytic 
process. In cell cultures, microglia interact with the pericytes, 
endothelial cells and astrocytes to activate MMPs. Therefore, microglia 
may be necessary for the activation of the proMMP-9 which could be 
done by MMP-3. 

As mentioned above, inflammatory mediators, such as TNF-α and 
IL-1β, induce the production of the MMPs. In addition, activation 
processes of MMPs involve proteases and free radicals. Therefore, 
microglia and tissue macrophages play a critical role in the inflammatory 
response both by releasing the MMPs and by forming molecules that 
activate them. Previous studies have shown that TNF-α stimulates cells 
to produce active MMPs, which facilitate leukocyte extravasation and 
brain edema by degradation of extracellular matrix components and 
the opening of the BBB that could be blocked by the use of the MMP 
inhibitor [123]. Astrocytic end feet and tight-junctioned endothelial 
cells act in concert with the basal lamina and the pericytes/microglia 
to form BBB as a neurovascular unit. The tight junctions of the 
endothelial cells comprise the first line of defense. Basal lamina forms 
a layer around the endothelial cells to provide a charged barrier and 
may impede diffusion of larger molecules. MMPs affect the function 
of the neurovascular structures by degrading the components of the 
basal lamina around the cerebral vessels to increase the permeability of 
the BBB, thereby contributing to brain edema and hemorrhagic brain 
injury [18,92]. Overall, MMPs cause increase in permeability of the 
BBB by targeting the matrix proteins, resulting in the final common 
pathway downstream of acute neuroinflammatory damage to induce 
the vasogenic edema. Research evidence suggests that the development 
and use of specific MMP inhibitors may reduce hemorrhage expansion, 
vascular damage and ischemic damage.

Potential targets to treat brain hemorrhage 

Some important, but very preliminary steps toward therapeutics 
for hemorrhage have been made using preclinical animal models. 
Therapies aimed at reducing the cascade of injuries surrounding 
a hemorrhage may reduce the deleterious effects of hemorrhage 
including edema, apoptotic and necrotic cell death. As describe 
above, there are many key processes involved in hemorrhage and the 
deficits that occur subsequent to hemorrhage. Inflammatory reactions, 
free radicals, BBB damage and edema are primary targets for useful 
hemorrhage treatments. This section will identify a few targets that 
should be further pursued. 

Anti-inflammatory drugs

When ICH occurs, blood components including erythrocytes, 

leukocytes, macrophages, and plasma proteins (thrombin and 
plasmin) immediately enter the brain. Therefore, brain tissue injury 
occurs after an inflammatory reaction which comprises both cellular 
and molecular components. Anti-inflammatory strategies have been 
tested in previous studies. As discussed above, there are detrimental 
effects of microglial activation in ICH-induced brain injury [124]. 
Therefore, it seems that there exists the therapeutic potential of 
treatments based on the inhibition of microglial activation shortly 
after the onset of ICH. In previous studies, tuftsin fragment 1-3 
macrophage/microglial inhibitory factor (MIF) inhibited microglial 
activation and macrophage infiltration following collagenase-induced 
ICH [26,74]. The treatment also reduced stroke injury volume and 
improved behavior. These findings further support that microglial 
activation promotes inflammatory reactions after ICH and MIF 
could be a valuable neuroprotective agent for the treatment of ICH. 
Furthermore, another study using a rodent ICH model showed that 
antileukocyte intervention reduced neutrophil infiltration, behavioral 
deficits and neuronal damage [125]. Therefore, the strategies targeting 
leukocytes and microglial activation may merit further evaluation 
either as alternative or adjunctive therapeutic approach to ICH.

TNF and MMP’s

Activation of cytokines is an important component in the cascade 
of events that lead to damage following a stroke. Mature pro-TNFα can 
be cleaved to biologically active TNFα by several membrane MMP’s, 
one which is known as TNF-alpha-converting enzyme (TACE) [126-
130]. While MMP’s are involved in the processing of pro-TNFα, mature 
TNFα can also induce MMP-9 in the CNS [16,18,21,131,132] which 
perpetuates the cycle of TNFα production that can result in membrane 
damage [122]. Synthesis of TNFα from pro-TNFα is blocked by MMP 
inhibitors like BB-2284 [133], BB-94 [134-136] as well as specific 
TACE inhibitors such as Ro32-7315[137] and DPH-067517[138]. A 
previous study showed that ICH can be reduced by administration of a 
non-specific MMP inhibitor BB-94 in a rat collagenase model [18]. In 
the RLCEM, the MMP inhibitor BB-94 also lowered the rate of tPA-
induced hemorrhage, while not affecting significantly hemorrhage rate 
in the absence of tPA administration [45]. It is interesting to note that 
BB-94 could reduce TNFα levels in rabbit brain even though BB-94 is 
a non-selective MMP inhibitor [139]. Also, other groups have reported 
that BB-94 can reduce tissue levels of TNFα [134-136]. The reduction 
in hemorrhage rate consequent to BB-94 administration is consistent 
with the previously described role of MMP’s as important factors in 
the BBB vasculature function and extracellular matrix remodeling 
following a stroke [121] but may also expand the roles of processing 
TNFα. Of particular promise are MMP-9 inhibitors that have recently 
been shown to reduce brain injury and apoptosis following SAH 
[140,141].

There is some evidence in ischemic stroke and hemorrhage patients 
that MMP-2 and MMP-9 may be involved either BBB breakdown or 
remodeling following the injury. In stroke patients, serum MMP-2 and 
MMP-9 levels increased during the course of ischemia [142,143]. In 
SAH patients serum MMP-2 levels from SAH patients MMP-2 levels 
are significantly decreased while MMP-9 levels are increased relative 
to controls. MMP-2 levels remain decreased 12 days post SAH, but 
MMP-9 levels appeared to recover [142,143]. There is also evidence 
linking MMP-2 to SAH from intracranial aneurysm rupture[144], 
which substantiates the hypothesis that MMP-2 and/or MMP-9 may 
be directly involved in the progression of stroke and hemorrhage. In a 
post-mortem study, there was increased endothelial expression of both 
MMP-2 and MMP-9 suggesting that endothelial expression of MMPs 
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may affect vascular matrix stability and contribute to hemorrhage 
[145]. The results from preclinical studies suggest that MMP’s and 
possibly TNFα are directly involved in blood barrier breakdown and 
hemorrhage in brain following a variety of insults. MMP-2, MMP-9 
and TACE are all valid targets for the development of small molecules 
to reduce spontaneous ICH, SAH or hemorrhage resulting from the 
administration of thrombolytics. 

Interleukin-1 has gained attention as a therapeutic target for 
stroke because extensive evidence support the direct involvement 
of interleukin-1 in the neuronal injury that occurs in acute 
neurodegeneration [146]. Studies have shown that inhibiting IL-1 
release or activity markedly reduces ischemic cerebral and cerebral 
hemorrhagic damage [147]. Moreover, previous studies have 
reported that over expression of interleukin-1 receptor antagonist 
(IL-1ra) attenuated brain edema formation and thrombin-induced 
intracerebral inflammation in a rat autologous blood injection model 
of ICH [148,149]. Therefore, these studies suggested that IL-1ra could 
be considered as a potential therapeutic agent for patients with ICH 
and could be the focus of additional preclinical and clinical research. 

Free radical scavengers 

Free radicals have been proposed to mediate an array of injuries 
following a stroke [150-156]. Reactive oxygen species cause brain 
injury via many different pathways. Compounds that can counteract or 
reverse the effects of free radicals have received a great deal of attention 
in recent years. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) 
is a potent lipid soluble hyrdoxyl and peroxyl radical scavenger used 
clinically for treatment of ischemic stroke in Japan. Previous study 
has shown that edaravone attenuated ICH-induced brain edema, 
neurologic deficits, and oxidative injury and also reduced iron- and 
thrombin-induced brain injury, suggesting that edaravone is a potential 
therapeutic agent for ICH [157]. Moreover, the edaravone clinical trial 
[158] reported that there was a significant improvement in functional 
outcome as evaluated using the modified Rankin Scale, when treatment 
was started within 72 hr of onset. Furthermore, another study reported 
preliminary findings of a clinical trial showing that patients treated with 
edaravone prior to administration of intravenous tPA had a reduced 
incidence of ICH compared with placebo-treated tPA-treated patients 
[159]. Thus, edaravone, or other lipophilic free radical scavengers may 
be useful to treat either acute ischemic stroke or hemorrhagic stroke.

Also, other studies have attempted to target pro-oxidant heme or 
iron to recue a potential source of ROS production during hemorrhage. 
It is postulated that the regulation of HO might decrease ICH-induced 
toxicity because the enzyme metabolizes heme to release iron [160]. 
Several studies have also shown that nonselective inhibitors of HO 
(tin-mesoporphyrin IX, tin-protoporphyrin, and zinc protoporphyrin) 
decreased ICH-induced brain edema and neurologic deficits 
[30,97,161,162]. Moreover, a ferric iron chelator (Deferoxamine) was 
shown to have a similar neuroprotective effect after ICH [96,163], 
suggesting that ROS could be a potential target for ICH therapy. 
Furthermore, the effect of melatonin, a potent antioxidant and free-
radical scavenger, on outcomes was investigated in rat collagenase-
induced ICH model. The results showed that brain edema and 
neurological function at 24 h were unchanged in spite of oxidative 
stress reductions. However, repeated treatment with the lower dose 
of melatonin (5 mg/kg) given at 1 h and every 24 h thereafter for 3 
days after ICH, led to normalization of striatal function, normalized 
memory tasks and reduced brain atrophy, suggesting that melatonin is 
safe for use after ICH and is protective [164].

New treatment possibilities

The following section will review new pharmacological agents 
still in early stages of development. However, since some of the most 
important recent advances have been non-pharmaceutical in nature, 
they will be highlighted below. Many of the novel treatments have the 
potential to reduce hemorrhage and may be the hemorrhage treatment 
of the future. 

Brain Hypothermia (BH) 

The secondary consequences of ICH including inflammation, 
edema, and oxidative damage all contribute to cell death after ICH. 
Preclinically, brain hypothermia (BH) has been used as an effective 
neuroprotective treatment in experimental brain ischemia and 
traumatic brain injury [165-168]. Before reviewing the intriguing 
results, BH must be defined. BH is now classified by the depth of cooling 
below normal body temperature (i.e. 37-38ºC). Mild hypothermia 
reduces body temperature by 3-6ºC, whereas deep hypothermia reduces 
body temperature by 10ºC [169]. Although there is no consensus 
on an optimal temperature, the largest neuroprotective benefit is 
obtained with 34ºC [170]. Neuroprotection by mild hypothermia 
is associated with mitochondrial preservation and suppression of 
apoptosis. Pathophysiological mechanisms involved in the beneficial 
effects of hypothermia are being elucidated [171]. Evidence suggests 
that significant metabolic downregulation including attenuation of 
the inflammatory response and reduced reactive oxygen species may 
be the basis for neuroprotection [171,172]. Suppression of both can 
reduce the activity of MMP’s to prevent BBB damage and edema 
[173,174]. Mild BH significantly reduces the brain edema formation 
after ICH and several neuroprotective mechanisms including reduced 
BBB disruption, inflammation and oxidative damage are suggested 
in this study [175]. Because preclinical studies are promising, the 
recommendation by Groysman [176], should be followed. Clearly, 
trials are warranted to define the specific operating conditions 
for effective hypothermia including the therapeutic window and 
temperature regimen [169]. Clinical trials of hypothermia for stroke 
(ICTuS-L trial) have had mixed results. A recent study showed the 
feasibility of hypothermia in stroke patients, but there were significant 
side effects related to the treatment. Pneumonia occurred in 50% of 
hypothermic patients compared to 10% of normothermic patients 
(p=0.001); however, there was an almost equal number of deaths in 
both groups (p>0.05) [177]. The results raise the following question: 
Is BH a cool method of neuroprotection or will the side effects limit its 
use? Only additional studies will be able to provide an answer.

Hyperbaric Oxygen (HBO)

Hyperbaric oxygen (HBO), 100% O2 at 3 bar or ATA [178] is a 
promising non-invasive method to decrease BBB damage, reduce 
hemorrhagic transformation and reduce hemoglobin extravasation 
in ischemic zones following embolic stroke [178]. Moreover, HBO 
has been found to reduce thrombolytic-induced hemorrhage [178]. 
Investigators have found that HBO has diverse effects[179,180] 
including reduced non-thrombin mediated edema, and edema 
reduction mediated by activation of ribosomal protein S6 kinases (p70 
S6 K), which are important to protein synthesis [180]. Furthermore, 
Ostrowski et al. [181,182], who extensively studied mechanisms of HBO 
in models of SAH, showed that HBO-induced reduced mortality and 
behavioral improvement was somewhat correlated with reduced lipid 
peroxidation measured by detecting malondialdehyde, the degradation 
product of polyunsaturated lipids. HBO treatment also reduced the 
expression superoxide producing enzyme, NADPH oxidase (NOX) 
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[182]. The study suggests that HBO decreases oxidative stress via an 
early inhibition of NOX. Matchett et al.[183] reviewed the use of HBO 
and suggested that the treatment has mainly positive effects in animal 
models, since HBO reduces BBB breakdown, decreases inflammation 
and oxidative stress, reduces edema and suppresses apoptosis [184]. 

Normobaric oxygen (NBO)

Normobaric oxygen (NBO) therapy has been studied by Lo and 
colleagues to treat both stroke and hemorrhage [185-187]. Like HBO, 
NBO, 100% O2 has some neuroprotective effects. Most work has been 
done in embolic stroke, rather than hemorrhagic stroke models. Lo 
and colleagues [186] showed that NBO could be safely administered 
with tPA in a rat embolic stroke model, leading the way for additional 
studies and clinically relevant measures. A follow-up study by Sun et 
al. [178] using a thrombin-induced hemorrhage model showed that 
NBO decreases infarct size and tPA-induced hemorrhage. In the same 
study, in parallel rats, they found that HBO reduced hemoglobin 
extravasation in the ischemic brain. Moreover, both NBO and HBO 
treatment decreased BBB damage and the incidence of hemorrhagic 
transformation. In a hemorrhage model, NBO did not affect 
collagenase-induced blood volume or edema and was ineffective at 
reducing neurological outcome [185]. Interpretation of a negative study 
using a single treatment regimen and is quite difficult, especially given 
the fact that the study was uncontrolled (i.e. no positive control). It is 
premature to definitively conclude that NBO treatment is ineffective to 
teat hemorrhagic stroke until various treatment regimens are tested in 
parallel in multiple hemorrhage models with proper positive controls 
in each study [188]. 

Hydrogen gas (HG)

A novel and quite interesting observation was recently made 
by Chen et al. [189] and Zhang et al. [190]. The discovery seems to 
tie together many of the key mechanisms described above including 
free radicals, oxidative stress and MMP’s. The authors showed that 
hydrogen gas by inhalation can exert neuroprotective effects and 
reduce hemorrhagic transformation following MCA occlusion. It is 
hypothesized that H2 gas decreases oxidative stress and reduces MMP-
9 activation and/or activity. 

Conclusion
ICH will continue to be an important problem as the population 

ages in the United States and worldwide. As can be gleaned from this 
article, there are many suitable targets for drug development including 
inhibition of specific MMP’s, TNFα, thrombin, inflammation and the 
coagulation pathway. Many preliminary attempts at monotherapy 
have not been effective. This is most likely due to simultaneous 
activation of a “hemorrhage cascade” and a “stroke cascade” with 
some overlapping key mediators [51,66,93,191,192]. There is a growing 
consensus that the treatment of ischemic stroke will require pleiotropic 
drugs or combination therapy [93,193-200]. This may be even more 
crucial when one considers the effect of brain blood on tissue plus 
the fact that brain bleeds will cause tissue ischemia and edema. For 
hemorrhage treatment, the following drug classes hold promise for an 
eventual treatment: anti-inflammatory drugs, anti-oxidants, thrombin, 
and HO inhibitors. Surprisingly, some of the most effective preclinical 
treatments are noninvasive therapies such as hyperthermia, HBO, NBO 
and HG. Although it is early in their development and investigation, 
they are all pleiotropic therapies that have multiple physiological 
consequences. Continued mechanism-based research and translational 
research will provide a better understanding of the mechanisms 

involved in hemorrhagic stroke so that preclinical knowledge can be 
translated into a clinically useful therapeutic.
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