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Introduction
Tumor necrosis factor- alpha (TNF-α) is a well-studied 

cytokine that acts as an important central mediator in the on-set of 
inflammatory cascade and exerts anti-tumoral activity [1]. TNF-α 
can mediate opposing effects within the central nervous system, such 
as neurotoxicity through the caspases pathway, or neuroprotection 
through NF-κB dependent gene transcription [2]. As a potent pro-
inflammatory cytokine, TNF-α levels rise in the nervous system after 
insults or after exposure to exogenous signals such as bacterial and viral 
proteins [3]. Beside the pro-inflammatory actions and mechanisms, the 
neuromodulatory face of TNF-α starts to be revealed [4]. For example, 
TNF-α enhances glutamatergic synaptic transmission by increasing 
surface expression of neuronal AMPA receptors [5,6]. Several findings 
have been pointing for a role of TNF-α in synaptic plasticity, more 
specifically in homeostatic synaptic scaling. Synaptic scaling is a type of 
plasticity, which involves adjustments in the strength of all synapses on 
a neuron in response to prolonged changes in its activity. First, it was 
shown that TNF-α mediates homeostatic synaptic scaling in response 
to prolonged blockade of activity [7-9]. A more recent study suggested 
that TNF-α is critical for maintaining synapses in a plastic state in 
which synaptic scaling can be expressed [10]. Homeostatic synaptic 
scaling mediated by TNF-α participates in experience-dependent brain 
plasticity [11]. Kaneko et al. described that experience-dependent 
plasticity in the developing visual cortex involves a homeostatic 
increase in responses, which is dependent on TNF-α signaling. Critical 
periods are restricted early development time windows during which 
the central nervous system displays heightened plasticity in response 
to events occurring in the environment. To determine the onset and 
duration of the critical period of experience-dependent plasticity in 
the primary auditory cortex, rat pups were exposed to pure-tones at 
different postnatal ages. Profound and persistent alterations in sound 

representations in the primary auditory cortex were found only when 
exposure occurred during postnatal day 11 (P11) to P13 [12], pointing 
this epoch as a window of critical period for plasticity in this cortical 
region [12]. Evidence point to a role of TNF-α in brain plasticity, but 
the modulation of endogenous TNF-α levels throughout a critical 
period of brain plasticity is not known. Here we document changes in 
TNF-α from before to after the critical period of experience-dependent 
plasticity in the primary auditory cortex. We assessed the endogenous 
TNF-α levels at different time-points around the critical period: before 
the critical period (P7), during the critical period (P12) and after the 
critical period (P30). Additionally, we measured the TNF-α levels in 
the frontal cortex at the same ages.

Materials and Methods
All experimental procedures were approved by the Institutional 

Animal Care and Use Committee of the University of California, San 
Francisco. Twenty-three female Sprague Dawley rats were studied. They 
were pre-medicated with atropine sulfate (0.02 mg/kg) to minimize 
bronchial secretions and dexamethasone (0.2 mg/kg) to prevent brain 
edema. They were then anesthetized with pentobarbital (35-60 mg/kg) 
and supplemental doses of pentobarbital (10 mg/kg, i.p.) were given if 
necessary. The right auditory cortex and the frontal cortex were exposed 
and auditory cortical responses were recorded with parylene-coated 
tungsten microelectrodes in a shielded, double-walled sound chamber. 
After the overall boundaries of the right primary auditory cortex were 
determined, the rats were deeply anaesthetized. The primary auditory 
cortex and the frontal cortex were rapidly dissected, frozen in dry ice 
and stored at -80°C until processing. Cortical fragments were lysed and 
acidified, and total protein concentrations were determined using the 
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BCA assay. TNF-α was quantified using an ELISA kit (BD OptEIA™ 
Mouse TNF ELISA Kit II, San Jose, USA) as per the manufacturer’s 
protocol.

Results
To specifically collect primary auditory cortical samples, we 

first functionally determined the boundaries of primary auditory 
cortex using the following criteria: (1) primary auditory neurons 
generally have a continuous, single-peaked, V-shaped receptive field; 
(2) characteristic frequencies of the primary auditory neurons are
tonotopically organized with high frequencies represented rostrally and 
low frequencies represented caudally; and (3) External boundaries are
characterized by nonresponsive sites and/or responsive sites with no
well-defined pure tone-evoked response [13]. Using these criteria, we
were able to precisely delineate the area within primary auditory cortex 
and collect respective cortical fragments for analysis. We assessed
TNF-α levels in the primary auditory cortex at P7 (before the critical
period), P12 (during the critical period) and P30 (after the critical
period) (Figure 1). We found that mean TNF-α levels in the primary
auditory cortex increase throughout the critical period, from 71.13
pg/g protein (SD=29.63; N=6) at P7, to 92.84 pg/g protein (SD=23.16;
N=5) at P12, and to 119.8 pg/g protein (SD=23.58; N=6) at P30. One-
way ANOVA analysis showed significant differences between the
groups (overall F=5.36; p<0.05). Post hoc analysis (Bonferroni) showed 
that TNF-α levels in the P7 group were significantly lower than at P30
(p<0.05), while no significant difference was found between P7 vs P12
and P12 vs P30. To assess whether the changes observed in the primary 
auditory cortex were specific for this structure or occurred globally in
the brain, we measured endogenous TNF-α levels in the frontal cortex
during the same time-points (Figure 2). Overall, the profile of changes
in TNF-α levels in the frontal cortex did not recapitulate the changes
observed in the primary auditory cortex. In contrast to the increase
observed in the auditory cortex, TNF-α levels in the frontal cortex
showed a tendency to decrease over the same time window: they went
from 29.56 pg/g protein (SD=10.62; N=3) at P7 to 14.14 pg/g protein
(SD=2.16; N=3) at P12, and to 17.08 pg/g protein (SD=3.13; N=3)
in P30. Although, one-way ANOVA analysis showed no significant
difference between the groups (overall F=4.74; p>0.05). It is noticeable
that mean TNF-α levels measured in the frontal cortex were always
lower than 30 pg/g protein, while in the primary auditory cortex they
were higher than 70 pg/g protein.

Discussion
We observed that cortical endogenous levels of TNF-α were 

significant higher at adulthood compared to P7 in the primary 
auditory cortex, displaying a TNF-α increase from before to after the 
critical period for experience-dependent plasticity in this region. It was 
previously suggested that TNF-α maintains synapses in a plastic state 
in which synaptic scaling can be expressed [10]. Furthermore, synaptic 
scaling mediated by TNF-α plays a role in potentiation of responses 
that occurs during neural plasticity induced in the binocular zone of 
the developing visual cortex by monocular visual deprivation [11]. 
Different from the plasticity induced by sensory deprivation that occurs 
in the visual cortex, the experience-dependent plasticity in the auditory 
cortex is induced by sensory exposure [12]. Brain plasticity induced by 
visual deprivation or sound exposures have been related to an increase 
in cortical inhibition mediated by GABA receptors [14,15]. This increase 
in inhibition is compatible with the induction of homeostatic synaptic 
scaling, which is dependent on TNF-α signaling [9]. Our observation 
that endogenous levels of TNF-α specifically increase in the auditory 
cortex from before to after the critical period suggests for a role for 
TNF-α in experience-dependent brain plasticity in the auditory cortex. 
One could argue that the changes in TNF-α might be merely related 
to the general development. However changes in TNF-α levels in the 
frontal cortex showed a different profile over the time-window studied. 
In contrast to the increase in TNF-α levels observed in the auditory 
cortex from before to after the time-window of critical period of (P7 
and adults, respectively), the frontal cortex showed (if any) a tendency 
of decrease in TNF-α levels. Interestingly, overall TNF-α levels in the 
auditory cortex were more than 2 times higher than the levels in the 
frontal cortex. A limitation to this study is that we do not know so far 
if these changes in TNF-α are relevant to the physiology of auditory 
cortex, since we did not perform any “loss-of-function” experiment. 
Additional studies are needed to address this question. In conclusion, 
we found that TNF-α levels in the auditory cortex of rats increases from 
before to after the critical period for experience-dependent plasticity in 
the primary auditory cortex. We speculate that TNF-α can play a role 
in brain plasticity mechanisms in the auditory system.
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Figure 1: TNF-α levels in the primary auditory cortex. P7, postnatal day 7; P12, 
postnatal day 12. A significant increase in TNF-a levels is seen from P7 to adult 
rats. *p<0.05, one-way ANOVA.

Figure 2: TNF-α levels in the frontal cortex of rats. P7, postnatal day 7; P12, 
postnatal day 12. There were no significant changes between the groups.
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