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Abstract

Hypertension is the most common risk factor for cardiovascular disease, which is the leading cause of death in
industrialized societies. More than 25% of the adult population had hypertension in 2000, and almost 30% are
projected to have this condition by 2025. Prevention, detection, and treatment of hypertension should be a high
priority. The treatment reduces the risk of stroke and myocardial infarction by about 40 and 15%, respectively, but
cardiovascular disease risks in hypertensive subjects remain increased despite apparently adequate blood pressure
control with conventional antihypertensive drugs. To improve treatment efficacy, several new targets have been
investigated and validated in experimental hypertension models. Further, the adenosinergic system, specifically the
adenosine A2A receptor, is potentially a novel and efficient approach for hypertension treatment. Herein, we provide
a review of the effects of adenosine on the cardiovascular system, focusing on the contribution of the A2A receptor
as a pharmacological target that induces blood pressure regulation by its actions on the central, vascular and renal
systems.
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Introduction
Hypertension is one of the major risk factors for cardiovascular

diseases, in addition to high cholesterol, diabetes, obesity, smoking
and stress. There are at least 970 million people affected by
hypertension worldwide and it is estimated that this number will
increase approximately 60%, reaching 1.56 billion hypertensive
subjects in 2025 [1]. Hypertension is a public health problem
throughout the world, and preventive actions need to be taken to
reduce the chance of becoming more widespread. The blood pressure
homeostasis depends on the activity of the sympathetic nervous
system, the renin-angiotensin-aldosterone system and the vascular
endothelium. Hypertension is caused by increasing peripheral vascular
resistance if untreated, can lead to complications such as
atherosclerosis, stroke and heart attack.

Hypertension is associated with vascular changes, including
functional and structural endothelial dysfunction and vascular
remodeling. One of the most obvious factors related to the
development and progression of hypertension is redox signaling. The
metabolism of oxygen by cells generates reactive oxygen species (ROS)
potentially deleterious. An abnormal redox signaling, commonly
induced by excess of ROS production and/or decrease in antioxidant
activity, generates oxidative stress triggering changes in vascular
function [2]. The ROS are important intracellular second messengers
which modulate activity of many molecules as tyrosine protein
phosphatases, protein tyrosine kinases, transcription factors, protein
kinases activated by mitogen and ion channels. The induction of these
pathways lead to the migration of smooth muscle cells, apoptosis,

expression of pro-inflammatory mediators and alteration of the
extracellular matrix. In addition, increased vascular tone occurs by
changing the regulatory role of the endothelium and through direct
effects on vascular smooth muscle contractility. In physiological
conditions, at low concentrations, the intracellular ROS play an
important role in redox signaling involved in maintaining function
and vascular integrity. Under pathological conditions, the ROS
contribute to vascular dysfunction and remodeling via oxidative
damage [3,4]. The increased production of superoxide anion and
hydrogen peroxide and decreased bioavailability of antioxidants have
been demonstrated in experimental and human hypertension [5].
Endothelial dysfunction observed in hypertension is consequent of an
imbalance between production and availability of endothelial factors
which promotes vascular constriction or relaxation. Prostacyclin
(PGI2) and nitric oxide (NO) are among the factors that could
promote relaxation of vascular smooth muscle whereas endothelin-1 is
considered the most potent endogenous vasoconstrictor [6]. The
imbalance occurs due to increased production and release of ROS by
the impaired vascular endothelium [7]. Superoxide anion stimulates
the synthesis and release of vasoconstrictors [6,7] which will reduce
vasodilator response mediated by endothelium and increase
vasoconstrictor response, which will contribute to increased peripheral
vascular resistance and hypertension. In addition, the increased
production of superoxide anion leads to increased concentration of
intracellular Ca2+ in vascular smooth muscle, because ROS can
inactivate SERCA and induce Ca2+ release from sarcoplasmic
reticulum through IP3 channel [8]. Hypertension is also associated
with sympathetic hyperactivity due to an increased activation of the
renin-angiotensin-aldosterone system which leads to an increase in the
concentration of norepinephrine. Angiotensin II increases the release
of noradrenaline from sympathetic peripheral terminals, regulates
activity of baroreceptors, controls renal blood flow and urinary
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excretion of Na+ which could regulate the blood pressure for long
term. The sustained elevation of blood pressure tends to cause left
ventricular hypertrophy, increased wall thickness and vascular
remodeling.

The treatment of hypertension is important to reduce
cardiovascular events, such as myocardial infarction, heart and kidney
failures. Lifestyle changes are essential for the prevention or delay the
appearance of hypertension and could increase the effectiveness of
pharmacological treatment and reduce cardiovascular risks [9]. Several
antihypertensive drugs, with distinct pharmacological targets are
currently available for clinical use. Diuretics, angiotensin-converting
enzyme inhibitors, beta-blockers, antagonists of α1-adrenergic
receptors, antagonists of AT1 receptor and Ca2+ channel blockers are
the drugs most widely used for the treatment of hypertension [9].
Despite adequate control of the blood pressure using conventional
antihypertensive drugs, cardiovascular risks in hypertensive subjects
remain superior in relation to normotensive [10]. This fact must be
due to the inability of these drugs in reducing cardiovascular structural
changes, such as cardiac hypertrophy, vascular remodeling and renal
injury, despite the reduction in blood pressure. There is therefore the
need for the development of new drugs that not only reduce blood
pressure, but also could improve those structural changes arising from
arterial hypertension.

One approach for controlling blood pressure in hypertensive
patients is the administration of multiple classes of antihypertensive
agents. However, dihydropyridine calcium channel blockers, ACE
inhibitors and diuretic agents associated with beta-blockers have a risk
of side effects [11]. Moreover, although the incidence of resistance
hypertension remains controversial, more than 1.9 % of hypertensive
patients experience uncontrolled high blood pressure despite taking
three or more antihypertensive medications [12]. Resistant
hypertension can also lead to an increased cardiovascular risk for
myocardial infarction, congestive heart failure, stroke, and chronic
kidney disease or in some cases death [12]. Diuretic therapy and the
administration of mineralocorticoid receptor antagonists represent
another treatment strategy for patients with resistant hypertension
[13]. However, due to the difficulty associated with treating resistant
hypertension, new antihypertensive agents are needed. One promising
approach is the targeting of adenosine receptors which activation not
only reduces blood pressure but also interferes with cardiac and
vascular remodeling.

Adenosine and its physiological effects
Adenosine is a purine nucleoside composed of an adenine molecule

attached to a ribose sugar molecule via a β-N9 glycosidic bond. It is
present both inside and outside of cells, and represents a nexus for
different metabolic pathways [14]. In particular, adenosine plays an
important role in energy transfer and in signal transduction, via cyclic
AMP (cAMP), which regulates many physiological and pathological

processes. Under physiological conditions, adenosine levels in cells
and tissue fluids are in the nanomolar range, however, they rise
substantially in response to different forms of cellular distress, such as
ischemia, hypoxia, trauma and inflammation [15]. The rapid release of
adenosine in response to abnormal cellular conditions induce a range
of tissue responses that are organ-specific for the restoration of
homeostasis [16,14]. These responses include control of cardiac
rhythm and circulation [17,18], lipolysis [19], renal blood flow [20,21],
immune function [22], sleep regulation [23,24], angiogenesis [25] and
vasodilatation, as well as inflammatory diseases [26-28].

Adenosine is mainly present in the cytoplasm in its phosphorylated
forms, which include adenosine monophosphate (AMP), adenosine
diphosphate (ADP), and adenosine triphosphate (ATP). These forms
are generated through ATP hydrolysis by the ecto-5-nucleotidase
enzyme, an integral part of energy regulation at the cellular level [29].
In response to cellular stress and damage, ATP is released into the
extracellular space and is rapidly dephosphorylated by extracellular
nucleotidases [30], thereby leading to a substantial increase in the
levels of adenosine. Adenosine can interact with G protein-coupled
receptors (GPCR), which are coupled to various secondary messenger
systems. Extracellular and intracellular adenosine molecules are also
susceptible to deamination by adenosine deaminase to form inosine,
while intracellular adenosine can be secreted to the extracellular fluid
or rephosphorylated to form ATP, with the latter reaction catalyzed by
adenosine kinase [31,32].

Adenosine mediates a wide variety of physiological functions by
interacting with transmembrane adenosine receptors, namely A1,
A2A, A2B and A3 receptors (A1R, A2AR, A2BR and A3R,
respectively). These receptors have distinct localization profiles, they
are associated with specific signal transduction pathways, and they are
subject to various types of regulation upon exposure to agonists. These
receptors are also considered potential targets for the treatment of
acute and chronic diseases based on their involvement in cellular
processes responsible for tissue injury [33]. Each adenosine receptor
subtype has been characterized according to an adenylate cyclase
effector system which utilizes cAMP as a secondary messenger. A1R
and A3R are coupled to Gi proteins and inhibit adenylate cyclase,
thereby leading to a decrease in cellular cAMP levels. Morever, A1R
are linked to various kinase signaling pathways, including those
mediated by protein kinase C, phosphoinositide 3 (PI3) kinase,
mitogen-activated protein (MAP) kinase and they also directly activate
K+ channels and inhibit Ca2+ channels [34]. A3R also utilize PI3
kinase and MAP kinase, pathways, as well as phospholipase D, RhoA
and Wnt pathways, to control cell functions [34]. Both A2AR and
A2BR are positively coupled to adenylyl cyclase through Gs proteins,
and their activation causes an increase in intracellular cAMP [34].
Furthermore, stimulation of A2BR can trigger adenylyl cyclase
activation via Gs proteins or PLC activation via Gq proteins.
Classification, body distribution and function of adenosine receptors
are shown in Table 1.

Receptor Coupling to effector system Body distribution Physiological function

A1 G Protein-coupled: Gi

Adenylate cyclase: ↓cAMP

Kinase pathways: PKC, MAPK, PI3K

Ion channels: ↑K+, ↓Ca2+

Broad distribution:

high in nerves, heart,

kidney and adipose tissue

Decreased renal blood flow, inhibition of renin release,
inhibition of lipolysis, increased systemic blood pressure,
vasoconstriction, bronchoconstriction, inhibition of
neurotransmitter release, inhibition of insulin and glucagon
release, reduced heart rate, sleep, analgesia, cardiac
preconditioning
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A2A G Protein-coupled: Gs

Adenylate cyclase: ↑cAMP

Broad distribution:

very high in basal ganglia; high in
nerves, blood

vessels, kidney and immune cells

Wakefulness and locomotion, increased renal flow,
immunosuppression, vasodilation and hypotension, coronary
vasodilation, angiogenesis, cardioprotection, baroreflex
control

A2B G Protein-coupled: Gs, Gq/11

Adenylate cyclase: ↑cAMP

Phospholipase C: ↑↓IP3, ↑Ca2+

Broad distribution, but generally low
abundance

Vascular integrity, cardiac preconditioning,

pro-inflammation (acute injury) and anti-inflammation (some
chronic disease states), fibrosis

A3 G Protein-coupled: Gi

Adenylate cyclase: ↓cAMP

kinase pathways: MAPK, PI3K

Phospholipase D, RhoA and Wnt pathways

Restricted distribution, varying in
different species: high in mast cells

Increased mast cell activation, airway contraction,
inflammatory pain, white cell chemotaxis, chronic
neuropathic pain relief, anticancer (melanoma)

Table 1: Classification, distribution and physiological function of the adenosine receptors [34,35,57,96,97,114,120]. cAMP, cyclic adenosine
monophosphate; PKC, protein kinase C, MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide 3 kinase; IP3, inositol triphosphate;
RhoA, Ras homolog gene family member A.

Adenosine has long been described as a molecule that mediates
functions of the central and cardiovascular systems, inducing
hypotensive/vasodilatation or hypertensive/vasoconstriction effects
depending on the specific receptor subtypes and body systems
involved. It can regulate blood flow either by acting directly on
vascular cells or indirectly because of its effects on the central/
peripheral nervous systems or renal system [35]. Figure 1 summarizes
adenosine signaling pathways which play important role to regulate
blood pressure. Pharmacological manipulation of these pathways is of
great interest and is currently being investigated as a therapeutic target
for a number of cardiovascular diseases. These studies are being
conducted in conjunction with several molecules, that exhibit both
agonist and antagonist activities against known adenosine receptors
involved in different cardiovascular conditions including
hypertension.

Figure 1: Pathways involved in the regulation of blood pressure by
adenosine receptors.

Adenosine receptors in the central nervous system
(CNS)

In the CNS, A1R are widely expressed by neurons in the cortex,
hippocampus and cerebellum [36]. These receptors are also expressed
by astrocytes [37], oligodendrocytes [38] and microglia [39]. In
neurons, A1R localize to synaptic regions where they modulate the
release of neurotransmitters such as glutamate, acetylcholine,
serotonin and gamma-aminobutyric acid (GABA) [40]. A2AR exhibit
a more restricted localization to the striatum and olfactory bulb [27].
However, these receptors are also expressed by neurons, microglia
oligodendrocytes and possibly astrocytes [41,42]. Furthermore, A2AR
have been described association with dendritic spines and postsynaptic
regions of the basal ganglia [43]. It has been demonstrated that these
receptors localize to the presynaptic regions (in the hippocampus), and
they modulate the release of neurotransmitters such as glutamate,
acetylcholine, GABA and noradrenaline [44-47]. A2BR are expressed
at low levels on neuronal and glial cells, such as microglia and
astrocytes [48,49] while low levels of A3R have been detected in the
hippocampus, cortex, cerebellum and striatum [46]. Cellular
localization of A3R has also been observed for neurons, astrocytes and
microglia [50-52].

One of the most well-established effects of adenosine on the CNS is
its capacity to increase intracellular cAMP in several areas of the brain.
The intensity of this effect has been found to be species-dependent.
Accumulating evidence also supports a modulatory role for central
adenosine receptors on baroreflex activity. Briefly, since adenosine can
bind A1R and A2AR that are located in the nucleus of the solitary tract
(NTS), which is an important center for cardiovascular control and
other autonomic functions, adenosine can differentially modulate
cardiovascular control of arterial pressure, heart rate, regional
sympathetic activity and vascular conductance [53]. Adenosine may
also directly inhibit central neurons via postsynaptic A1R, and activate
neurons via A2AR. In the NTS, adenosine may exert inhibitory effects
via A1R located on post- and presynaptic sites of neurons and vagal
afferents, respectively [54,55].

In the NTS, there are two sources of adenosine: extracellular ATP
that is released by synapses under physiological conditions as a
neurotransmitter and is degraded to adenosine by ectonucleotidases
[29], and intracellular ATP which is catabolized to adenosine under

Citation: Zapata-Sudo G, Sudo SZ, Alencar AKN, Sudo RT (2014) Targeting of the Adenosine Receptors as A Novel Strategy for the Treatment
of Arterial Hypertension . J Neurol Neurophysiol 5: 243. doi:10.4172/2155-9562.1000243

Page 3 of 9

J Neurol Neurophysiol
ISSN:2155-9562 JNN, an open access journal

Volume 5 • Issue 6 • 1000243



pathological conditions such as hypoxia, ischemia, and severe
hemorrhage [56].

Activation of A1R that are located in the caudal, subpostremal
division of the NTS, results in an increase in mean arterial pressure.
After bilateral sinoaortic denervation and vagotomy, and after the
blockade of inotropic glutamatergic transmission in the NTS, pressor
and sympathoactivatory responses to stimulation of NTS A1R are
abolished/attenuated [57]. It is hypothesized that stimulation of A1R
facilitates release of vasopressin into the circulation, and this would be
consistent with the inhibition of tonic baroreflex restrain that is
subsequently observed.

Conversely, stimulation of A2AR in the NTS evokes a distinct
pattern of regional sympathetic responses, as well as a decrease in
mean arterial pressure and heart rate [58]. Specifically, activation of
A2AR in the NTS decreases renal sympathetic nerve activity and post-
adrenal sympathetic nerve activity. Several studies have also shown
that the hypotensive effects of activating A2AR in the NTS are
mediated by a release of glutamate from afferent terminals, and/or
from intrinsic NTS interneurons involved in barorreflex transmission
[59-61].

Accumulating evidence indicates that essential hypertension can be
triggered by central mechanisms. For example, inappropriate
modifications of synaptic functions within networks can contribute to
the development of hypertension, which is a multifactorial disorder
that can affect several aspects of human health [62]. Increased
sympathetic nerve activity is also often observed concomitantly with
hypertension, whereas, activation of A2AR has been shown to evoke a
decrease in blood pressure due to a decrease in sympathetic nerve
activity [62].

Adenosine receptors and their actions on peripheral
vascular beds

Adenosine can also regulate the blood pressure by acting directly on
vascular cells [63] because it has been shown to induce a potent
vasodilation effect [64]. Correspondingly, adenosine and its analogues
have been shown to induce the vasodilatation of canine basilar arteries
[65], porcine coronary arteries [66], rat aorta [67], and dog carotid
arteries [68]. The most extensively evaluated function mediated by the
postsynaptic adenosine receptors is vasodilatation. In particular, A2A
and A2B receptor-mediated vasodilation has been reported in
association with several vessels, namely muscular arteries (mesenteric
[69], renal [70], and coronary arteries [71]), elastic arteries and the
aorta of several species (guinea pig [72], rat [73], and hamster [74]).
Adenosine has also been shown to relax pre-contracted isolated
pulmonary arterial rings. It is hypothesized that these effects are
mediated by activation of A2AR and A2BR [75] with A1R and A3R
negatively modulating the vasodilation induced by these receptors
[76-78]. Meanwhile, A1R appear to be involved in lowering the heart
rate and negatively regulating blood pressure, with the latter involving
an induction of vascular smooth muscle contraction [78]. In the
coronary arteries, vasodilatation is primarily caused by activation of
A2AR [79-83]. A2AR also have an important protective role in the
kidneys, lungs, and heart during ischemia/reperfusion injury.
Activation of A2AR has been shown to promote beneficial effects
against lung ischemia/reperfusion injury when the A2AR agonist,
CGS21680, was administered prior to ischemia and during reperfusion
[84]. Furthermore, these protective effects were associated with
signaling by extracellular-signal-regulated kinases (ERK) and cAMP.

Endogenous A2AR expressed by PC12 cells were found to activate the
ERK phosphorylation cascade, possibly due to an increase in cAMP
levels [85,86].

In an A2A receptor knockout mouse model, a decrease in
adenosine-mediated aortic relaxation has been observed [78], and this
supports the importance of A2AR in maintaining vascular tone.
Further support is provided by experiments conducted in our
laboratory using a newly synthesized compound, LASSBio-1027,
which exhibits vasodilator and antihypertensive actions that are
mediated by activation of A2AR [88]. LASSBio-1027 induced
concentration-dependent relaxation of the aorta via the activation of
A2AR and the release of nitric oxide (NO). Molecular docking studies
confirmed these results by identifying potential interactions between
LASSBio-1027 and the A2A receptor [87]. In a spontaneous
hypertensive rat (SHR) model, this new compound induced
hypotension and produced an antihypertensive effect with prolonged
treatment, yet had no effect on the blood pressure of normotensive
rats [87].

Some investigators have suggested that vascular relaxation in
response to activation of A2AR may be independent of endothelial
cells [88], while other investigators have shown that relaxation
mediated by A2AR includes a significant role for endothelial cells [89].
These controversial results may be resolved by the findings that A2AR
are located not only in the vascular endothelium, but also in vascular
smooth cells [90]. Furthermore, a role for activated A2AR in
vasodilation has been confirmed [91,92]. The activation of endothelial
A2AR, which are coupled to Gs proteins, induces the release of NO via
activation of the adenylate cyclase-protein kinase A pathway [93,94].
In vascular smooth cells, activation of A2AR increases activation of
cAMP and protein kinase A, thereby, leading to phosphorylation and
opening of K+ channels [95]. As a result, hyperpolarization and
vasodilatation occur [96].

Renal adenosine receptors and the blood pressure
regulation

While the renal localization of the adenosine receptors is well-
documented, the reported distribution of adenosine receptors in the
kidney vasculature and tubular segments varies depending on the
detection technique employed. A1R have a high affinity for adenosine
and are expressed in preglomerular microvessels, (including afferent
arterioles), in glomeruli (including mesagial cells), juxtaglomerular
cells and vasa recta [96,97]. A2AR and A2BR have been detected in
whole kidney preparations [96] in the glomeruli of rat and mouse
kidneys, in the medullary descending vasa recta and in the papilla [98].
A3R and their mRNA have been detected in whole kidney
preparations of various species [98].

The kidney plays an integral role in the maintenance of extracellular
fluid volume and electrolyte balance, and thus, contributes to long-
term control of arterial pressure [99]. Adenosine plays a critical role in
the regulation of renal vascular tone and reactivity, and additionally
affects tubular transport [100,101]. Correspondingly, activation of
A1R has been shown to constrict the renal vasculature, inhibit renin
release and enhance the proximal tubular reabsorption of NaCl
[102,103]. The vasoconstrictor effects of A1R activation in the afferent
arteriole is currently a major focus since adenosine is a primary
mediator of tubular glomerular feedback [103]. When A2R are
stimulated an endothelium–dependent relaxation effect is achieved via
stimulation of adenylyl cyclase, thereby leading to an increase in renal
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blood flow [104] and a decrease in blood pressure [105]. Stimulation
of A2AR also promotes natriuresis by reducing NaCl reabsorption in
the thick ascending loop of Henle and the collecting duct [106-108]
and attenuates tubular glomerular feedback responses by stimulating
NO synthase [109]. In afferent arterioles, activation of A2AR has been
shown to counteract restriction induced by A1R that lead to dilation
and decreased autoregulation [104]. Functional expression of both
A2AR and A2BR has been detected, although the opposing vasodilator
effect during adenosine-mediated afferent arteriolar vasoconstriction
was predominantly associated with activation of A2BR [109]. In
contrast, the renal function of A3R remains poorly characterized. They
may play a role in sodium and fluid balance by regulating the Na+/H+
exchange [110] or may exacerbate renal ischemia-reperfusion injury
[111]. Interestingly, however, expression of A3R has been found to
increase with age and their expression is upregulated in response to
high salt intake [109].

Carroll et al. (2012) demonstrated that stimulation of adenosine
levels with salt loading and down-regulation of A1R via increased
adenylyl cyclase activity related to stimulation of A2AR may play an
important role in enhanced salt excretion of the kidney, and thus, the
regulation of blood pressure [109]. Salt-sensitivity is an important
characteristic of individuals that exhibit essential hypertension as well

as other forms of salt-dependent hypertension that affect African-
Americans, diabetics, and the aged. Thus, the identification of
potential targets for the management of salt-sensitive hypertension
may be of therapeutic benefit, and the A2A receptor pathway may
represent an important therapeutic target [110].

Adenosine receptors as drug targets
The knowledge of the physiological functions of adenosine and its

receptors was important to identify the therapeutic potential of it
[112]. However, the successful development of a targeted therapeutic
for adenosine was not reached yet. Many promising ligands have been
identified but side effects such as tachycardia and tolerance [113] due
to low selectivity have precluded their clinical development. The
identification of differences in receptor subtype structure at the
molecular level may facilitate the design of not only potent ligands but
also subtype selective ligands. Preclinical and clinical studies of
adenosine receptors ligands are described in Table 2. Regadenoson, an
A2A receptor agonist, has been approved by the US Food and Drug
Administration (FDA) for clinical use in case of myocardial perfusion
imaging in patients with suspected coronary artery disease.

Compound Receptor selectivity Indication or use (phase)

Agonists

Adenosine (Adenocard, Adenoscan) A1, A2A Paroxysmal supraventricular tachycardia (approved), myocardial
perfusion imaging (approved), other uses in testing

Apadenoson A2A Myocardial perfusion imaging (III)

Regadenoson A2A Myocardial perfusion imaging (completed)

BAY 60-6583 A2B Atherosclerosis (preclinical)

Binodenoson A2A Myocardial perfusion imaging (III)

BVT.115959 A2A Diabetic neuropathic pain (II)

Capadenoson A1 Atrial fibrillation, chronic treatment (II)

LASSBio-1027 A2A/A3 Systemic hypertension (preclinical)

LASSBio-1386 A2A Pulmonary hypertension (preclinical)

LASSBio-1359 A2A Pulmonary hypertension (preclinical)

LASSBio-1366 A2A Pulmonary hypertension (preclinical)

MRS3558 A3 Autoimmune inflammatory diseases (preclinical)

Cl-IB-MECA A3 Liver cancer (I-II)

CP608,039 A3 Cardiac ischemia (discontinued)

Antagonists

Caffeine A1/A2A/A2B/A3 Motor manifestations of Parkinson’s disease and excessive daytime
somnolence in Parkinson’s disease (completed)

ATL 844 A2B Asthma and/or diabetes (preclinical)

Naxifylline A1 Heart failure (renal function) (discontinued)

FK-453 A1 Acute renal failure (preclinical)
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Rolofylline A1 Heart failure (renal function) (discontinued)

Toponafylline A1 Heart failure (renal function) (IIb)

Vipadenant A2A Parkinson’s disease (II)

Table 2: Therapeutic use for agonists and antagonists of adenosine receptors. [16, 87,114, 118-120].

Over the past 20 years, medicinal chemistry efforts have generated
agonists and antagonists of adenosine that exhibit high affinity and
high selectivity for the human variants of the four adenosine receptors.
Ongoing research is directed towards the development of novel
adenosine ligands with refined structure-activity relationships to
improve their in vivo biodistribution and tissue selectivity [113].
However, a significant issue is the widespread expression of adenosine
receptors.

A2AR as a novel drug target to treat hypertension
A2AR appears to be the main subtype of adenosine receptor which

could reduce blood pressure through the effects in the NTS, peripheral
vessels and kidneys (Figure 2). Recently, we have described the design
and pharmacological profile of new N-acylhydrazones (NAH)
LASSBio-1359 [114], LASSBio-1366 [115], LASSBio-1386 [116] and
LASSBio-1027 [88]. All exhibited vasodilator activity through the
activation of adenosinergic A2AR. Long-term administration of these
compounds in SHR [88] did not induce tolerance to the
antihypertensive effect suggesting that NAH could represent new
candidates for the treatment of arterial hypertension.

Brain

Kidney

Systemic vessels

Vasoactive 
hormones

NTS

SNS

SNS
A2AR

Adenosine

A2AR
Adenosine

A2AR

Adenosine

GsA2AR

AC ATP

Adenosine

Blood pressure 
regulation

NTS cells
Smooth muscle cells

Endothelial cells
Kidney cells

Hypotensive effects of A2AR activation 
in the NTS  

Vascular relaxation in response 
to A2AR activation

A2AR activation enhances
salt excretion

+

-

+

cAMP

NOR
NOR

+

+

Figure 2: A2AR and its effects on blood pressure regulation.
Activation of A2AR by adenosine can reduce blood pressure
because it: 1. influences negatively the sympathetic tonus
(inhibition of norepinephrine release); 2. induces vasodilatation
through NO release on endothelial cells; 3. promotes membrane
hyperpolarization on smooth muscle cells; 4. reduces renal flow
(renal vessel vasodilation) and salt excretion. AC: adenilate ciclase.
cAMP: ciclic adenosine monophosphate. ATP: adenosine
triphosphate. NO: nitric oxide. NTS: nucleus of the solitary tract.
SNS: sympathetic nervous system. Gs: stimulatory G protein NOR:
norepinephrine.

Based on the central, vascular and renal control of blood pressure
that activation of A2AR mediate, we hypothesize that additional
applications for A2AR as targets for the treatment of arterial
hypertension in the clinical setting will be identified. Further clinical
studies also need to carefully monitor individual differences in
treatment and the potential for combining the direct actions of A2AR
agonists with drugs targeting other pathways and/or targets.
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