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Abstract
Mild traumatic brain injury (mTBI) is a large subgroup of traumatic brain injury in which patients experience minor but 

persistent neurophysiologic dysfunctions that lead to disability in social interaction and daily work. New emerging magnetic 
resonance imaging (MRI) techniques hope to provide better understanding of the underlying pathophysiology of various 
symptoms in mTBI. Susceptibility-weighted MRI (SWMRI) is a MRI technique particularly sensitive in detecting cerebral 
microbleeds (CMBs) in the brain parenchyma. Studies have shown evidence of CMBs associated with mTBI, particularly at 
gray-white matter junction. Although the significance of CMBs has been debated in recent years, there are evidences that 
these subtle image findings may have diagnostic and prognostic implications, and possibly an imaging biomarker in mTBI. 
SWMRI is recommended as complementary sequence to the MRI protocol for patients with mTBI for detection of CMBs as 
well as for further evaluate the severity of injury and future treatment planning. 

Introduction
Traumatic Brain Injury (TBI) is the most common worldwide 

neurologic condition, with an incidence of 235-556/100000, and more 
than 75% of TBIs are classified as mild traumatic brain injury (mTBI) 
by definition of the American Congress of Rehabilitative Medicine 
[1-3]. By definition, a patient of mTBI is a person who has had a 
traumatically induced physiological disruption of brain function, but 
where the severity of the injury does not exceed the following: loss of 
consciousness (LOC) of approximately 30 minutes or less, Glasgow 
Coma Scale (GCS) score of 13 to15 upon acute medical evaluation, 
and post-traumatic amnesia (PTA) less than 24 hours in duration 
[4]. Common causes of mTBI are traffic accident, accidental falls, and 
sports-related repetitive concussive head trauma, such as in boxing, 
hockey, and football [5-7]. Despite the lack of evident pathologic 
abnormalities on conventional neuroradiological examinations, 
nearly a third of mTBI patients develop less severe but persistent 
neurophysiologic dysfunctions, such as headache, nausea, dizziness, 
inability to concentrate, irritability, memory impairment, cognitive 
decline, personality changes, and generalized fatigue. The course is 
usually self-limited, resolving within 6-8 weeks in 85-90% of patients, 
but some may persist for life, leading to disability in social interaction 
and daily work [8]. 

To date, there is a lack of effective clinical, laboratory, or image 
makers as prognostic factors for patients of mTBI. Previously 
considered a temporary disruption, there have been several different 
approaches in attempt to understand the pathophysiology of various 
symptoms in mTBI. Performance in neuropsychological tests has 
been applied to investigate the severity of the symptoms and clinical 
relevance. Neuroradiology examinations were used to identify the 
possibly structural changes in the brain parenchyma. The standard 
method for primary survey of head trauma is computed tomography 
(CT) due to its accessibility and short scan time. Magnetic Resonance 
Imaging (MRI) is preferred for further investigation in subacute 
to chronic phase for subtle intraparenchymal lesions and edema. 
However, results of CT and routine MRI scans nearly always reveal 
negative or equivocal findings for patients of mTBI. 

Susceptibility-Weighted MR Imaging
Susceptibility-weighted MRI (SWMRI) has been increasingly used 

in neurology and cerebrovascular research for visualization of the 
venous vasculature and detection of cerebral microbleeds (CMBs). It 
is an imaging technique that was developed in 2004 by Haacke et al. 
using the basic physical phenomenon of paramagnetic elements [9]. 
As a paramagnetic element, iron has different magnetic susceptibilities 
to the surrounding parenchyma, and it changes the local magnetic 
field in the presence of an externally applied magnetic field. SWMRI 
is a modified high spatial resolution T2-weighted 3D gradient recalled-
echo (GRE) MR technique that accentuates the magnetic properties of 
blood products, improving detection of small amounts of paramagnetic 
hemorrhagic blood products, extravascular deoxyhemoglobin and 
methemoglobin, based on the susceptibility difference between blood 
products and the surrounding brain tissue. SWMRI have shown 
greater sensitivity and accuracy in detecting traumatic-related injuries, 
such as diffuse axonal and vascular injuries, than CT and conventional 
MR techniques [10-13]. The two most common SWMRI in clinical use 
are susceptibility-weighted imaging (SWI) and susceptibility-weighted 
angiography (SWAN), both have similar ability in the detection of 
CMBs, and are superior to traditional T2*-weighted GRE in both 
detection rate and spatial resolution. Furthermore, much smaller voxel 
size of SWMRI enables the detection of smaller CMBs, whereas the 
combination of increased echo time and decreased bandwidth and 
flip angle ensures a high signal-to-noise ratio and adequate contrast 
between CMBs and surrounding brain tissues [14-16]. 

Currently, CMBs are most commonly defined as SWMRI 
hypointense lesions less than 5mm in diameter and match the 
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following recommended criteria: black on T2*-weighted MR imaging, 
round or void, blooming on T2*-weighted MR imaging, devoid of 
signal hyperintensity on T1- or T2-weighted sequences, at least half 
surrounded by brain parenchyma, and distinct from other potential 
mimics such as iron/calcium deposition, bone, or vessel flow voids [17] 
(Figure 1). Common causes of CMBs are hypertensive vascular disease, 
lacunar infarction, cerebral amyloid angiopathy, and traumatic-related 
micro hemorrhages. Less common causes include cerebral embolism, 
cerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy (CADASIL), multiple cavernous malformations, 
vasculitis, hemorrhagic micro metastasis, radiation vasculopathy, and 
Parry-Romberg syndrome [18].

Histopathology and neuroimaging correlation of cerebral 
microbleeds

Pathologically, CMBs are composed of accumulation of 
hemosiderin-containing macrophages following a micro hemorrhage 
[19]. In clinical setting, however, the diagnosis of CMBs is primarily 
based on image findings. Exactly how reliable are these MRI-detected 
CMBs? Histopathological confirmation of CMBs seen on neuroimaging 
is important because there are a number of CMB mimics, such as vascular 
micro calcification, micro aneurysm, and contained erythrocytes. To 
date, there has not been any report of histopathology-neuroimaging 
correlation of mTBI-related CMBs. However, studies in which CMBs 
were characterized histopathologically and correlated with MRI (both 
antemortem and postmortem) in patients of cerebrovascular diseases 
have shown credibility of these MRI-detected CMBs (Figure 2).

A literature review by Shoamanesh et al. suggested a strong 
association between MRI-detected CMBs and histopathological 
evidence of previous hemorrhage [20]. The result of 85 MRI-detected 
CMBs from 18 patients showed corresponding histopathology findings 
of hemosiderin and iron depositions in 68% of the CMBs, 15% showed 
no specific pathology, 13% contained intact erythrocytes, and the 
remaining 3% showed vascular psuedocalcifications, microaneurysms, 
and distended dissected vessels. A study by De Reuck et al. investigated 
CMBs on postmortem brain sections from Alzheimer patients using 
7-tesla MRI showed the sensitivity and specificity of 7-tesla MRI 
imaging to be 100% and 50%, respectively, for detecting CMBs of 1-3 
mm diameter and 100% and 38%, respectively, for smaller hemorrhages 
of 200-500 μm [21].

The accuracy of the CMB sizes is debatable. In a study by Schrag et 
al., the CMBs were 1.57 ± 0.75 times larger than their corresponding 
lesion on pathology due to ‘blooming effect’, and noticed that the 
magnitude of ‘blooming’ was greater for smaller lesions [22]. In 

Figure 1: Recommend criteria for CMB identification on MRI by Greenberg et al. [17].

contrast, Tatsumi et al. reported the actual sizes of the CMBs are 
comparable with those detected on MRI [19]. One should keep in 
mind that the size of MRI-detected CMBs can vary with the change 
of imaging parameters (TR/TE, slice thickness, flip angle) [19,20]. 
Lengthening the TE or decreasing the flip angle is known to increase 
the size of CMBs. The ‘blooming effect’ of MRI can overestimate the 
diameter of a CMB.

Application of susceptibility-weighted imaging in mild 
traumatic brain injury

In recent years, there has been an exponentially growing interest 
and debate in determining the clinical significance of CMBs in 
association with mTBI. Three main concerns were discussed in the 
previous studies.

Significant presence of CMBs in mTBI patients

All most all earlier studies showed no evident prevalence of CMBs 
in mTBI patients, however, these earlier studies were mostly using CT, 
0.5-Tesla MR scanner, or conventional MR Sequences [23-26]. Two 
studies by Hahnel et al. and Hasiloglu et al. both used GRE MRI to 
detection of CMBs in amateur boxers in comparison with healthy non-
boxing volunteers (3T GRE and 1.5T SWI, respectively) [5,6]. Both 
studies showed similar results with more CMBs detected in amateur 
boxers (42 and 21 respectively) than control (37and 21 respectively), 
but the difference did not prove to be significant. A recent large group 
study by Huang et al., with 111 subjects in both mTBI and control 
groups, showed the prevalence of CMBs in mTBI patients was 23.4%. 
Furthermore, in comparing to healthy volunteers, nearly 4 times as 
many microbleeds identified in mTBI group than in control group (60 
and 15, respectively). This is by far the study with largest number of 
subjects, and their analysis between the two groups should demonstrate 
a certain level of statistical reliability [27].

The location of the CMBs in mTBI

Nearly all studies have shown consistency of most mTBI-related 
CMBs to be located at gray-white matter junction (Figure 3). Although 
the result by Hasiloglu et al. in amateur boxers was not statistically 
significant, their results showed that all CMBs were located exclusively 
in the corticomedullary junction of frontal and temporal lobes [6]. 
The study by Huang et al. also showed significantly more CMBs at 
corticomedullary junction than in controls (86.7% vs. 20%) [27]. This 
owes to the pathophysiology associated with mTBI. Torsional forces 
during traumatic brain injury generated by rapid acceleration or 
deceleration of the head cause the shearing of axons, resulting in diffuse 
axonal injury (DAI). The acceleration shearing force on axons is often 
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accompanied by petechial tissue-tear micro hemorrhages due to injury 
of vascular endothelium, leading to extravasation of blood products 
that are not routinely visible on CT or conventional MRI sequences, 
but more apparent on T2*-weighted MRI than on conventional MR 
sequences [28,29]. Areas most vulnerable to shear injury include the 
cerebral gray-white matter (corticomedullary) junction, splenium 
of the corpus callosum, and dorsolateral brainstem [18]. Thus, the 
location of mTBI-related CMBs detected on MRI is consistent with 
pathophysiological findings.

Clinical significance of CMBs in mTBI

There has been a growing interest in determining whether 
these SWMRI-detected CMBs contribute to clinical neurological 
dysfunctions. Park et al. noticed that there seems to have positive 
relationship between location of CMBs and specific symptoms. For 
example, CMBs at occipital lobe, pons, and midbrain seemed to be 

accompanied with visual field defect, sensorineural hearing loss, 
and Parkinson syndrome, respectively [10]. Huang et al. compared 
neuropsychological tests between mTBI patients with SWMRI-
detected CMBs and those without. Those with CMBs had significantly 
lower digit span score, a test focusing on short-term memory, than 
the patients without CMBs [27]. The results indicated that those with 
mTBI-related CMBs showed neuropsychological defect on short-term 
memory function. 

Though the evidences are still insufficient, but they suggested 
that CMBs could be a possible biomarker for mTBI. However, it 
should be reminded that CMBs themselves do no cause change in 
neuropsychological performance; rather, they are an epiphenomenon 
of underlying injury to neuron and vascular tissues. Further correlation 
of SWMRI-detected CMBs with other functional MRI is required 
for further understanding of the pathophysiology and alteration in 
neuroconnectivity.

Figure 2: Histopathology-neuroimaging correlation of CMBs. Two CMBs of the right thalamus. (a) Postmortem GRE-MRI. (b) Macroscopic appearance (brown 
spots). (c) Iron stain (blue lesions). These CMBs are roughly similar in size in each picture. Scale bar = 10mm. (From Direct Comparison of Histology of Microbleeds 
with Postmortem MR Images. Cerebrovasc Dis 26:142-146; with permission)

Figure 3: SWMRI imaging of CMBs. 
(a) Axial SWAN images depicting CMBs at corticomedullary in an mTBI patient. (b) In contrasts, CMBs associated with hypertensive vascular disease are often 
located at deep gray matter. 
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Conclusion
Once thought to be an irrelevant finding, these subtle mTBI-related 

CMBs are now shown to have diagnostic and prognostic implications 
and a possible imaging biomarker in mTBI. SWMRI is recommended 
as complementary sequence to the MRI protocol for patients with mTBI 
for detection of CMBs and to further evaluate the severity of injury and 
future treatment planning. Furthermore, the SWMRI-detected CMBs 
are merely the “tip of the iceberg” of underlying DAI. Other emerging 
functional MR techniques, such as DTI, have been explored for further 
evaluation of the connectivity defects from DAI that may be associated 
with clinical neuropsychological dysfunctions.
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