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Abstract

Although the potential effect of aberrant expression of catabolic and anabolic genes on the development of
osteoarthritis (OA) is well-documented, the regulatory mechanism for the expression of these genes in articular
chondrocytes remains to be elucidated. The recent advances in epigenetic studies have identified microRNA
(miRNA) as one of the epigenetic mechanisms for the regulation of gene expression. This mini review highlights the
role of miRNA in the regulation of gene expression in articular chondrocytes and its significance in the pathogenesis
of OA, with a discussion on the potential of miRNA as a new biomarker and therapeutic target for OA. Further
investigations are required to determine the specificity, sensitivity, and efficacy of miRNA for clinical applications
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Abbreviations OA: Osteoarthritis; MiRNA: MicroRNA; NcRNA:
Non-coding RNA; MRNA: Messenger; RNA; SiRNA: Short Interfering
RNA; piRNA: Piwi-interacting RNA; ECM: Extracellular matrix;
ADAMTS: A Disintegrin and Metalloproteinase with
Thrombospondin Motifs; MMP13: Matrix Metalloproteinase 13;
COL2: Type II Collagen; IL-1β: Interlukin 1-β; COL9: Type IX
Collagen; TNF-α: Tumor Necrosis Factor-α; Runx2: Runt-Related
Transcription Factor 2; NFAT: Nuclear Factor of Activated T-cells.

Introduction
In contrast to genetics which is the study of hereditable variation in

DNA sequences, epigenetics refers to the study of the changes in gene
transcriptional activity caused by mechanisms other than changes in
DNA sequences. Traditional epigenetic covalent modifications include
DNA methylation and histone protein modifications (e.g. acetylation,
methylation, phosphorylation, ubiquitination and sumoylation).
Recently, non-coding RNAs (ncRNAs) that possess epigenetic-like
properties in the regulation of gene expression have also been
considered as one of the epigenetic mechanisms [1,2]. With the use of
high-throughput technologies, comprehensive assessment of the
quantity of transcriptional molecules, including protein-coding
messenger RNAs (mRNA) and ncRNAs, is now an area of rapid
expansion in biomedical research of common diseases, such as
Osteoarthritis (OA).

OA is the most common form of arthritis and is the leading cause of
chronic disability in middle-aged and older populations [3]. Aberrant
gene expression in articular chondrocytes of OA joints has been well
documented in both animal and humans studies. However, the
underlying regulatory mechanism that causes aberrant gene expression
in OA cartilage has not yet been elucidated.

This review will first highlight the role of microRNA (miRNA), one
of the most studied ncRNAs, in the regulation of aberrant gene

expression in articular chondrocytes as it relates to the pathogenesis of
OA, and then discuss the potential use of miRNA as a biomarker and
potential therapeutic target for OA.

miRNA and OA

Biogenesis of miRNA
Classically, a gene is assumed to be transcribed into an mRNA and

then translated into a protein; however, the discovery of genes
encoding ncRNAs has extended the definition of a gene. The ncRNA
genes produce transcripts functioning as structural, catalytic, or
regulatory RNAs rather than being translated into proteins. Based on
their length, ncRNAs can be divided into short ncRNAs (<30
nucleotides) and long ncRNAs (lncRNAs, >200 nucleotides). Short
ncRNAs include miRNAs, short interfering RNAs (siRNAs), and piwi-
interacting RNAs (piRNAs) [4]. MiRNAs are transcribed from miRNA
genes as long primary transcripts (pri-miRNAs) characterized by a
hairpin structure and are processed as pre-miRNAs (around 70-
nucleotides long) in the nucleus. After being transported into the
cytoplasm, pre-miRNAs are cleaved by Dicer and then matured into
miRNA of 22-24 nucleotides [5].

Aberrant gene expression in OA cartilage
Adult articular cartilage is an avascular tissue in which

chondrocytes are the only cellular component. Articular chondrocytes
maintain the low-turnover of the extracellular matrix (ECM) by
delicately regulating the expression of catabolic and anabolic genes.
Progressive degradation of articular cartilage ECM is the major
pathophysiological feature of OA. Increased expression of catabolic
genes and decreased expression of anabolic genes are usually observed
in OA chondrocytes, which disrupt the metabolic balance in articular
cartilage.

A number of catabolic genes have been proposed to be involved in
the development of OA, including the genes encode: 1) Aggrecanases,
such as ADAMTS (a disintegrin and metalloproteinase with
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thrombospondin motifs)-4 and -5, two major aggrecanases which have
been shown to play important role in development of OA [6-9]; 2)
Collagenases, particularly MMP (matrix metalloproteinase)-13, a
major type II collagen (COL2A1)-degrading collagenase, which
contributes to the initiation and progression of OA [10,11]; 3) Pro-
inflammatory cytokines, such as IL (interleukin)-1β, IL-6, and TNF-α
(tumor necrosis factor)[12,13]; 4) RunX2 (Runt- related transcription
factor 2), which contributes to the pathogenesis of OA by promoting
chondrocyte hypertrophy and matrix breakdown in articular cartilage.
Runx2+/- mice exhibit decreased cartilage destruction and osteophyte
formation, along with reduced expression of type X collagen and
MMP-13, as compared with wild-type mice [14]. Upregulation of these
catabolic genes contributes to the increased degradation of articular
cartilage ECM.

A number of anabolic genes have been proposed to be involved in
the structure and function of articular cartilage, including the genes
encode: 1) Aggrecan, a major proteoglycan in articular cartilage
[15,16]; decreased aggrecan expression is often evident in OA cartilage
[17,18]. 2) Collagens, collagen type II is one of the major ECM
components of the articular cartilage. Mice bearing a small deletion
mutation in type II collagen gene developed OA-like lesions [19]. 3)
SOX9 (SRY-Box 9), SOX9 is a master transcription factor for
chondrogenesis during the development of the skeletal system, in
cooperation with SOX5 and SOX6 [20,21]. Although mice with
conditional postnatal deletion of Sox9 in chondroytes do not develop
OA [22], later OA usually is associated with decreased SOX9
expression [23]. 4) NFAT1 (Nuclear Factor of Activated T-cells 1),
which is a member of the NFAT transcription factor family originally
identified as a regulator of the expression of cytokine genes during the
immune response [24,25].

NFAT1 has recently been shown to play an important role in
maintaining the permanent cartilage phenotype in adult mice. Nfat1
knockout (Nfat1-/-) mice exhibit normal skeletal development, but
display over-expression of numerous matrix-degrading proteinases
and pro-inflammatory cytokines, as well as loss of collagen-2 and
aggrecan during the early stage of OA. These initial changes are
followed by articular chondrocyte clustering, formation of chondro-
osteophytes, progressive articular surface destruction, formation of
subchondral bone cysts, and exposure of thickened subchondral bone,
all of which resemble human OA [26]. Down regulation of these
anabolic genes contributes to the decreased ECM synthesis, impairing
the repair ability of articular cartilage.

Regulation of gene expression in OA by miRNAs
The importance of epigenetic regulation of gene expression to the

development of OA has recently been reported [27-29]. A number of
miRNAs have been identified to be involved in the pathogenesis of OA
in recent epigenetic studies. miRNAs may directly bind to catabolic
and anabolic mRNAs to regulate their expression at a post-
transcriptional level in cytoplasm with a complimentary sequence to
induce cleavage and degradation, or block translation [30-32]. New
findings indicate that the regulatory effect of miRNAs on the
expression of catabolic and anabolic genes in OA may take place at
upstream levels prior to their transcription. First, miRNAs target
upstream signaling pathways or transcription factors. The activity of
several signaling pathways, such as NF-kappaB pathway [33,34], Wnt/
beta-Catenin pathway [35], SIRT1/p53 pathway [36] and SDF1/
CXCR4 pathway [37], were found to be modulated by miRNAs in
chondrocytes during the development of OA. Moreover, miRNAs have

also been reported to regulate transcription factor SOX9 in the
development of OA [38,39]. Second, miRNAs target upstream
epigenetic factors. Histone deacetylase-2 [40], -4 [41-43], and NAD-
dependent deacetylase sirtuin-1 [44] have been found to be regulated
by miRNAs in OA cartilage, indicating that the interaction among
different epigenetic mechanisms is involved in OA pathogenesis.

miRNA and treatment of OA
The development of disease-modifying pharmacologic therapy for

OA currently faces major obstacles largely because the pathogenesis of
OA remains unclear. The aberrant expression catabolic and anabolic
genes are a well-characterized molecular finding in OA; however,
clinical trials targeting a single inflammatory mediator or proteinase
did not slow the progression of OA [45-47]. This is probably due to the
involvement of multiple factors in the pathogenesis of OA. In this
regard, upstream molecular regulators would be more favorable
therapeutic targets.

MiRNAs could be potential upstream targets for treatment of OA as
one miRNA may regulate several genes. Furthermore, miRNAs
regulate gene expression in OA cartilage at multiple levels and in a
sequence-specific manner [48,49]. However, a large number of
miRNAs have recently been identified in OA joint tissues, and one
gene may be regulated by several miRNAs (Table 1).

Further investigations are needed to identify the articular cartilage
specific miRNA(s) and to validate their efficacy in animal models of
OA and in patients with OA. Specific transcription factors that regulate
multiple catabolic and anabolic genes, such as NFAT1 [26,27,29], could
also be potential upstream targets for treatment of OA.

miRNA and OA biomarker
Currently, X-ray and MRI (magnetic resonance imaging) are the

established methods for the diagnosis of OA in clinical practice
[30-49]. However, specific blood testing that can be used to aid in the
diagnosis and monitoring of OA progression is still under
development. Clinicians and scientists are striving for a novel
molecule(s) which can be used as a biomarker for early OA detection
and for monitoring the progression of OA [50].

Given the high frequency of miRNAs expression in OA and the
remarkably stable form of miRNAs present in clinical samples of
plasma and serum [51,52], miRNAs could be ideal blood-based
biomarkers for OA [53]. However, more studies are needed to identify
the OA-specific miRNAs with high sensitivity to OA changes.

Conclusion
The recent advances in epigenetic studies have shed light on the

importance of miRNAs in regulation of gene expression at multiple
levels related to the pathogenesis of OA [54-65]. This warrants the
potential of miRNAs as therapeutic targets for OA. The tissue-
specificity and high frequency of miRNA expression in OA renders
miRNAs novel molecules as potential biomarkers for diagnosing OA,
monitoring OA progression, and evaluating treatment efficacy.

Further studies are required to identify which miRNAs out of the
large number of miRNAs reported in the literature (Table 1) have high
specificity, sensitivity and efficacy and could be used for clinical
validation in OA patients [66-78].
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miRNA Species Change in
OA Target gene Reference

miR-125b H ADAMTS4 [54]

miR-140 M

ADAMTS5 [31,55,56]Has-miR-15a H

miR-30a H

miR-98 R Bcl2 [57]

miR-199a H COX2 [58]

miR-210 R DR6 [34]

miR-221-3p H Est-1 [59]

miR-138-5p H FOXC1 [60]

miR-21 H GDF5 [61]

miR-92a-3p H HADC2 [62]

miR-365 H HDAC4 [43]

miR-142-3p M HMGB1 [63]

miR-140 H
IGFBP-5 [64]

miR-27a H

miR-381a-3p H IKBalpha [65]

Has-miR26a-5p H iNOS [66]

miR-26a H
KPNA3 [60]

miR-26b H

miR-139 H MCPIP [67]

miR-373 H MECP-2 [68]

miR-27a H

MMP-13 [30,64,69,70
]

miR-27b H

miR-127-5p H

miR-320 H

miR-9 H NF-kappaB1 [33]

miR-634 H PIK3R1 [71]

miR-221-3p H SDF1 [37]

miR-370 H SHMT-2 [68]

miR-34a H
SIRT1 [36,44]

miR-449q H

miR-145 H SMAD3 [72]

miR-146a R SMAD5 [73]

miR-101 R
SOX9 [39,74]

miR-30a H

miR-125b-5p H SYVN1 [75]

miR-130A R TNFα [76]

miR-145 H TNFRSF11B [77]

miR-562-5p H TRAF2 [78]

Hsa: homo sapiens; H: human; M: mouse; R: rat; : upregulation; :
downregulation

Table 1: Summary of differentially expressed miRNAs and their
target(s) in OA cartilage.
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