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Introduction
Epilepsy is characterized by recurrent unprovoked seizures and 

has an estimated prevalence of about 5-15 per 1000 [1]. Uncontrolled 
epilepsy can lead to further injury of the brain and is associated with 
increased morbidity and mortality [2]. The etiology of epilepsy reflects 
a complex interaction between genetic and environmental factors that 
have bearing on treatment and prognosis. Approximately 25-30% of 
epilepsy patients do not respond to medical management with AEDs, 
and thus epilepsy surgery remains the most likely option for cure. 
Determination of potential focal epileptogenic zone (EZ) is a critical 
first step in management of refractory seizures. Once a potential seizure 
focus is identified, these patients may also be candidates for epilepsy 
surgery, in which precise determination and complete resection of EZs 
is imperative [3].

Electroencephalography (EEG) is routinely used for identification 
of focal ictal onset and interictal epileptiform discharges [4]. When 
electrophysiologic localization is concordant with neocortical lesions 
seen on MRI, the success of epilepsy surgery is high [5]. Even in the 
absence of concordant lesions on MRI, surgical resection of single foci 
detected by intracranial EEG (iEEG) often results in a good seizure 
outcome [6]. Magnetic resonance imaging (MRI) is the preferred 
method for initial screening of structural lesions that may represent 
EZs. The most well characterized lesion detected by neuroimaging is 
mesial temporal sclerosis (MTS) associated with temporal lobe epilepsy 
[7]. Less commonly, lesions of the extratemporal neocortex are 
revealed, which as in the case of MTS [8-12], predict a good outcome 
after epilepsy surgery [8`,11,13-15]. 

A particular challenge in the evaluation of intractable epilepsy 
patients is that in about 30% of extratemporal epilepsy cases, brain MRI 
does not identify a lesion [16]. It is increasingly recognized that in many 
NLNE cases, an EZ with underlying focal cortical dysplasia (FCD) 
may be missed by routine MRI [17,18]. Since nonlesional epilepsy is 
associated with a poor surgical outcome compared to lesional epilepsy, 
the use of multimodal imaging for localization of lesions not seen on 
MRI is essential to identify candidates for epilepsy surgery who are 
refractory to AED therapy. Indeed, multimodal imaging to localize 
the EZ in one study of NLNE resulted in a good seizure outcome after 
surgery in 80% of patients [19]. Other functional imaging modalities, 
including single-photon emission computed tomography (SPECT) 
and positron emission tomography (PET) have shown utility in 
evaluation and treatment of NLNE [19,20]. Magnetoencephalography 
(MEG) has also recently become increasingly used as an adjunct for 

localization of lesions. Furthermore, advances in MR image processing 
have allowed for improved detection of structural lesions, including 
FCD [21,22]. As imaging technology advances and our understanding 
of the pathophysiology of NLNE improves, these cases should become 
more effectively managed. In this review, we will discuss recent work 
related to the pathophysiology of NLNE and the diagnostic and surgical 
approaches to management of this disease.

Neuropathology in Neocortical Epilepsy: Does 
Nonlesional Neocortical Epilepsy Exist?

In most cases of neocortical epilepsy, intracranial EEG (iEEG) 
monitoring will be necessary to localize the seizure focus often in 
conjunction with structural abnormalities detected by brain MRI [23]. 
The detection of a structural lesion i.e., tumor, vascular malformation, 
or FCD, assuredly aids with localization of the resection site and in 
fact, there is often, though not exclusively, close correlation between 
the lesion location and seizure focus. From a clinical perspective, co-
localization of an anatomic lesion and the seizure focus determined 
by intracranial electrodes can predict a more successful seizure free 
outcome. This makes intuitive sense since the lesion is conceptually 
thought to cause seizures by virtue of the disruption of tissue 
architecture. The resection of an epileptogenic lesion within an ictal 
onset zone (IOZ) is recognized as among the most important factors 
linked to a favorable surgical outcome [3]. The majority of surgical 
series have suggested that the presence of a specific lesion usually leads 
to a favorable surgical outcome [24]. The presence of a lesion increases 
the likelihood of seizure freedom and thus, brain MRI is relatively 
good at predicting the prognosis of neocortical epilepsy. In contrast, 
if no lesion is seen on pre-operative MRI, this suggests a diagnosis of 
NLNE. An important reason for an unfavorable operative outcome 
in patients with NLNE is the inherent difficulty of identifying the EZ 
[25]. However, recent studies have shown that the presence of a lesion 
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may not necessarily predict a more favorable surgical outcome and 
that resection of radiographically normal appearing tissue may afford a 
successful outcome [26]. This finding may reflect that the electrical IOZ 
extends beyond the anatomical extent of the brain lesion or that the 
anatomic extent of the lesion is unappreciated radiographically. 

Surgical resection will yield tissue for neuropathological 
analysis that may provide a definitive diagnosis. Neuropathologists 
use several approaches to classify the tissue pathology including 
immunohistochemistry to define proteins such as neurofilaments, glial 
fibrillary acidic protein, and markers of cell division or inflammation. 
Many resected areas will exhibit a clear pathological abnormality 
such as FCD, low-grade tumors, vascular malformation (e.g., AVM), 
hypoxic-ischemic damage, or gliosis [27]. In one study of 62 frontal lobe 
epilepsy patents, 46 exhibited FCD [27]. The histopathological features 
of FCD have been classified [28,29]. Type IA and IB exhibit a more 
mild disruption of cortical cytoarchitecture. For example, FCDIA or 
IB, laminar architecture is relatively preserved whereas in FCDIIA and 
FCDIIB there is a complete loss of lamination. FCDIIA is characterized 
by disorganized cortical lamination and the presence of enlarged and 
dysmorphic neurons. FCDIIB is characterized by cortical laminar 
disorganization, dysmorphic neurons, and balloon cells (BCs). Tumors 
include low-grade glioma, ganglioglioma, or oligodendroglioma. 
Ganglioglioma and dysembryoblastic neuroepithelial tumors (DNET), 
low grade neoplasms that are closely linked to dysplasias, are among the 
most common low-grade neoplasm identified in intractable pediatric 
epilepsy patients. These tumors exhibit mixed histopathological 
features including proliferative astrocytes, dysmorphic neurons, and 
large cells of unclear cellular lineage known as atypical ganglion cells. 
Small areas of hypoxic-ischemic injury and encephalomalacia may be 
seen and occur by unknown mechanisms. The clinical significance of 
gliosis is also unknown but could reflect an early in utero hypoxic-
ischemic injury or viral infection. For each of these lesion subtypes, the 
current belief is that epileptogenesis results from cellular abnormalities 
i.e., changes in cell structure or type, alterations in the expression of 
neurotransmitter receptor subunits or ion channels, or the effects 
of inflammatory cells such as microglia that are typically seen in 
these lesions. Electrophysiological analyses of acute slices from FCD 
specimens have demonstrated that cytomegalic pyramidal neurons 
in FCD have larger membrane capacitance, time constant, and input 
resistance than normal-appearing pyramidal neurons [30]. Cytomegalic 
pyramidal neurons display repetitive calcium oscillations, a sign of 
hyperexcitability. Interestingly, BCs are relatively electrically silent. 
One observation has been that all of these lesion types exhibit abundant 
numbers of astrocytes that may also contribute to epileptogenesis by 
altering ambient levels of glutamate, an excitatory neurotransmitter.

A more vexing clinical problem is when no lesion is seen on brain 
MRI that coincides with the predicted IOZ identified by scalp EEG. 
In these so-called “nonlesional” cases, MRI at 3Tesla strength does 
not visualize a lesion that could be causative for recurrent seizures. 
Thus, the tacit assumption is either that there is no lesion in the brain 
or that the lesion is below the level of MRI resolution. For example, 
among 89 intractable epilepsy patients with normal brain MRI, 
fully 58 had evidence of tissue pathology [19]. Indeed, in most the 
NLNE cases, histopathological analysis reveals microscopic changes 
suggesting lesional pathology and demonstrating that most NLNE 
cases are actually lesional cases. In tuberous sclerosis complex, while 
tubers are typically visualized by brain MRI, there may be extensive 
micropathology beyond tubers alone such as focal heterotopias, 
isolated abnormal cell types, and areas of subtle cortical dyslamination 
[31]. As in the case of lesional resections, when pathological changes 

are identified in NLNE cases, the usual diagnoses include FCD or 
gliosis. It is unusual for NLNE to result from a low-grade neoplasm 
and uncommon for the pathology to reveal a high-grade neoplasm. On 
rare occasions, no pathological changes are identified but this finding is 
entirely dependent on the extent of pathological investigation. Unless 
a careful analysis of the tissue specimen is undertaken, it is possible 
that subtle FCD e.g., type IA, can be missed. In the case of truly normal 
brain architecture within the resected region, the mechanisms of 
epileptogenesis remain a mystery. 

Seizure Semiology and Pre-surgical Clinical Evaluation
The objective of pre-surgical evaluation is to determine the location 

and extent of the EZ and its relationship to eloquent cortex. This can 
be a challenging task in nonlesional epilepsy particularly due to the 
difficulty in demarcating the extent/margins of the EZ. The currently 
accepted approach includes the accumulation of information based 
on history, exam, neuropsychological testing, WADA, multimodal 
imaging, and phase 1 video-EEG monitoring to confirm diagnosis 
and capture interictal and ictal scalp EEG activity along with ictal 
semiology. In the best case scenario, this information should all 
concordantly point to the same EZ. In the case of NLNE, the patients 
almost always require phase 2 video-EEG monitoring with iEEG. The 
phase 1 information, however, is crucial in deciding the extent and type 
of intracranial electrodes used. As part of phase 2 of the pre-surgical 
evaluation, the interictal and ictal iEEG pattern will aid in demarcating 
the extent of the EZ and mapping eloquent cortex. 

It is essential to obtain a detailed description of all seizure types 
and behaviors as they may be the first indication of solitary versus 
multifocal disease. Specific details such as description of an aura can 
be the first key to localizing or lateralizing the EZ. At the same time, 
a thorough physical exam with careful attention to subtle weakness, 
sensory loss, or a skin lesion may be helpful in finding a previously 
unknown underlying disease or provide clues about the localization of 
the lesion. 

The neuropsychological assessment may reveal areas of 
dysfunctional cortex which may help localize the lesion in NLNE. 
Additionally a lower IQ may suggest a poor prognosis as it may be a 
surrogate to a more generalized or multifocal disease [32]. The major 
benefit of both neuropsychological testing and WADA is to understand 
the potential risk of cognitive deficits after surgery and educate the 
patient and family prior to resection. 

Inpatient video-EEG monitoring occurs in a supervised semi-
controlled environment with trained personnel with the goal of 
capturing all seizure types. It can be helpful in clarifying the disease and 
most notably localizing and lateralizing the EZ. The seizure semiology 
can be seen on video and scrutinized for localizing and lateralizing 
signs. It stands to reason that the seizure semiology represents the 
cortical discharge in a specific region and provides clues as to the 
symptomatogenic zone. However, seizures can spread rapidly, and 
behavior caused by the spread of the seizure can present as a false 
localizing sign. Careful attention to the order of the event and clearly 
stereotyped events may provide reassurance about the reliability 
of a single focus of disease. Table 1 gives examples of localizing and 
lateralizing clinical semiology based on the area of cortex involved 
[33-40]. This can be paired with ictal and postictal lateralizing features, 
which together will give a better sense of the EZ involved [40]. The main 
contribution of the semiology is to aid in placement of the intracranial 
electrodes, but the semiology itself does not appear to determine the 
clinical outcome [41]. 



Page 3 of 8

Citation: Tobochnik S, Gutierrez C, Crino P, Connolly P (2012) Refractory Nonlesional Neocortical Epilepsy: Current Trends. J Neurol Neurophysiol 
S2:004 doi:10.4172/2155-9562.S2-004

J Neurol Neurophysiol                                                                                                                               ISSN: 2155-9562 JNN, an open access journal Epilepsy: Current Trends

Electrophysiology and Multimodal Imaging
Multimodal imaging is critical for evaluation of NLNE, although 

approaches to combining modalities are highly variable and dependent 
on the clinical context of each case. Intracranial EEG is the gold 
standard for IOZ localization but carries increased risk compared to 
non-invasive imaging methods. The use of multimodal non-invasive 
imaging may improve EZ localization, allow for smaller resections 
during epilepsy surgery, guide placement of iEEG electrodes, and in 
some cases prevent the need for a lengthy and invasive iEEG evaluation 
altogether.

Scalp EEG is always performed during evaluation of NLNE. 
Interictal scalp EEG predicts both ictal onset localization and good 
surgical outcome in NLNE when spikes remain strictly localized to 
a single area [42]. This is uncommon in NLNE and more frequently 
scalp EEG reveals multifocal or mislocalized EZs, such as in putative 
neocortical temporal epilepsy [43]. Recent studies have revealed more 
subtle EEG findings associated with favorable outcomes of epilepsy 
surgery, such as ictal onset focal beta discharges on both scalp EEG and 
iEEG [44]. High frequency oscillations at >80 Hz on iEEG have been 
associated with IOZs, and thus may have value in evaluation of NLNE 
[45]. Additionally, ictal onset baseline shifts and infraslow activity at 
<0.1 Hz has been shown to have localizing value in focal epilepsies [46].

PET and subtraction ictal SPECT studies have been used for many 
years to assist in localization of EZs, which are often hypometabolic 
on interictal PET and show increased ictal and decreased interictal 
regional perfusion by SPECT [47,48]. Direct comparison between MRI, 
FDG-PET, and subtraction ictal SPECT localization in neocortical 
epilepsy has shown variable sensitivity depending on the type of lesion, 
with higher sensitivity of PET and MRI compared to SPECT for tumor 

localization and higher sensitivity of PET and SPECT compared to 
MRI for neuronal migration disorders [49]. In the 30% of patients 
with normal MRI in one study, PET and SPECT imaging produced 
correct localization of lesions in 60% and 55% of cases as confirmed 
by pathology [49]. The use of PET/MRI coregistration has also shown 
utility in improving detection of lesions i.e., FCD, tumor, AVM, and 
can guide repeat MRI analysis to improve lesion detection [50,51]. 
However, traditional PET and subtraction ictal SPECT imaging 
generally show unimpressive concordance with iEEG in NLNE, 
showing value in EZ localization in about half of patients [43]. 

Analysis of subtraction ictal SPECT alone may fail to identify 
focal changes due to variability in uptake patterns. Furthermore, small 
differences between ictal and interictal SPECT and variability in overall 
intensity and orientation make visual side by side interpretation of EZs 
difficult. Subtraction ictal SPECT coregistered with MRI (SISCOM) 
largely solves these problems, and compared to subtraction ictal 
SPECT and FDG-PET, SISCOM shows better concordance with iEEG, 
particularly for extratemporal epilepsy [52-55]. EZ localization by 
SISCOM has been shown to predict a favorable outcome of epilepsy 
surgery [52-54,56]. It is important to note that localizability in these 
studies were dependent in part on early radiotracer injection times 
[43,52]. In cases requiring iEEG, SISCOM has been shown to improve 
placement of the electrodes, and even in patients who have failed 
previous epilepsy surgery, SISCOM may be useful for evaluation of 
repeat surgery [56,57].

The contribution of MEG to surgical evaluation of both lesional 
epilepsy and NLNE is well established [58-63]. MEG often shows high 
concordance with iEEG, similar to that of SISCOM, and concordance 
between MEG and iEEG with normal MRI is associated with better 

Epileptogenic zone Semiology

Temporal

Medial Temporal lobe

• Déjà vu, fear, viscero-sensory auras with nausea, rising epigastric sensation
• Staring and limited motor movement with oral or manual automatism
• Autonomic features
• Dystonic posturing contralateral to seizure focus with ipsilateral automatism
• Ictal speech, vomiting may suggest a non-dominant lateralization
• Postictal aphasia suggests dominant lateralization

Neocortical temporal lobe
• Aura of auditory phenomena, déjà vu, complex visual distortions, vertigo
• Motionless staring and unresponsiveness
• Contralateral clonic movements

Frontal

Mesial frontal

• Ictal fear
• Ictal laughter without mirth
• Onset in sleep
• Fencing posture
• M2e posture (contralateral shoulder abduction, elbow flexion, head deviation toward affected arm)
• Figure-of-4 posture
• Hyperkinetic seizures including body rocking, kicking or boxing

Dorsolateral frontal

• Spreading clonic activity 
• Versive seizures
• Lateral eye deviation
• Aphasia
• Nocturnal hypermotor activity
• Laughing, shouting, bicycle peddling, thrashing of extremities

Orbitofrontal • Hypermotor automatisms
• Thrashing movements
• Sudden motion arrest, unresponsiveness, staring

Insular • Laryngeal discomfort 
• Sensation of throat constriction followed by contralateral paresthesias

Parietal
• Auras of contralateral tingling, numbness, pain, thermal sensation
• Motor activity depending on spread to sensorimotor temporolimbic, supplemetary motor or 

premotor cortex

Occipital
• Contralateral simple visual distortions, blindness
• Ocular pain
• Tonic deviation, nystagmus, eyelid fluttering

Table 1: Common examples of localizing and lateralizing semiology [60-67].
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outcomes of epilepsy surgery [55,64-66]. When MEG reveals a single 
cluster of dipoles within the resected IOZ, the seizure outcome is very 
good, compared to poorer outcomes with multiple dipole clusters 
[65,67]. In addition to improving placement of intracranial electrodes, 
MEG can prompt re-evaluation of “normal” MRI to improve detection 
of structural lesions, potentially preventing the need for iEEG 
[61,62,66,68].

These imaging studies demonstrate our increasing ability to 
specify EZs in NLNE. Newer imaging modalities, including diffusion 
tensor imaging and functional MRI, will likely gain increasing use 
in the near future for preoperative evaluation in this challenging 
type of epilepsy [69,70]. When any of the imaging modalities reveal 
concordant localization the outcome is usually good, however when 
discordant, invasive approaches become necessary and outcomes are 
generally poor. Clinical management becomes especially difficult if 
iEEG confirms multiple IOZs.

Surgical Considerations in Extratemporal Epilepsy
Surgery is a late consideration in the treatment of NLNE. As we 

have described, where medical treatment fails and a localizable lesion 
is identified, resective surgery may be considered. As shown in table 2, 
numerous other surgical approaches may have merit, particularly some 
of the stimulative approaches. The spatial and temporal resolution of 
long term scalp EEG is limited. Therefore, a question may arise whether 
there is a bilateral focus or a unilateral focus with rapid generalization. 
Second, when the side is known, high resolution invasive localization is 
often necessary in the form of a large lobar grid. 

Invasive electroencephalography

Invasive EEG monitoring is necessary for cortical resection when 
the epileptic focus is not clear. Subdural strip electrodes are used 
primarily to lateralize an epileptogenic focus, and large subdural grids 
are used to unilaterally localize a focus. It is important to cover as 
much of the suspected area as possible for accurate lateralization and 
localization [71]. In our center, we routinely identify electrode locations 
in image space by coregistering postoperative MRI and CT images. If 
the electrodes are properly indexed in the image, an electroradiographic 
record of the eloquent and epileptogenic regions can be obtained and 
used as a navigational tool during resection. Subdural strip electrodes 
are placed through a bur hole and passed blindly into the subdural 
space. Multiple electrodes may be inserted through one bur hole to 
cover wide regions of the brain. In patients with bifrontal discharges, 
strip electrodes are placed over the medial and lateral surfaces of the 
posterior frontal lobe from bur holes at the coronal suture, just off the 
midline [72]. Subdural grid electrodes are placed with a craniotomy. 
They are used primarily for determining the site of seizure onset over the 
convexity of one hemisphere. They can also be used for extraoperative 
functional mapping by knockout stimulation of each electrode. The 

maximal extent of an epileptogenic focus and areas of cortical function 
are determined with these evaluation methods [73]. With invasive EEG 
methods, the electrode leads are brought out through the scalp and the 
patient is monitored for many days. The most common complications 
are infection and leakage of cerebrospinal fluid, especially with a large 
subdural grid.

Anatomy

The extent of cortical resection is based on the results of presurgical 
evaluation and findings on intraoperative recording and stimulation. 
Resection of essential cortex such as the language and precentral arm or 
leg motor cortex should be absolutely avoided in adults because of the 
resultant hemiparesis or aphasia. Therefore, it is particularly important 
to identify language and motor cortical sites before proceeding with 
resection surgery. Anatomically, the frontal lobe Broca speech area is 
identified in the opercular, inferior frontal gyrus (usually the posterior 
2.5 cm of this gyrus). It is difficult to identify Wernicke’s area by 
anatomic criteria. The parietal speech area is identified 1 to 4 cm above 
the sylvian fissure and 2 to 4 cm behind the postcentral sulcus. The 
temporal speech areas usually extend posteriorly behind the level of 
the postcentral sulcus and 2 to 3 cm from the adjacent convolution 
above, behind Heschl’s gyri. Lack of defining anatomic features for 
Wernicke’s area renders language mapping essential for cortical 
dominant hemisphere resections [74]. Large frontal resections in the 
nondominant hemisphere may be carried out in front of the precentral 
gyrus. Rough localization of the precentral and postcentral gyri is 
performed by identifying the somatosensory evoked potential (SSEP) 
phase reversal over the central sulcus [75]. Subsequently, identification 
of the precentral and postcentral gyri is accomplished by stimulation 
under anesthesia without neuromuscular blockade [73]. Some surgeons 
prefer an awake patient for motor mapping. Resection of precentral arm 
or leg motor cortex is permitted only if significant contralateral paresis 
is already present [75]. The lower nondominant precentral face area can 
be resected as long as the resection does not extend into the underlying 
white matter. The resulting contralateral facial paresis improves but 
may not return to normal [76]. Resection of the postcentral sensory 
arm or leg area causes a profound proprioceptive deficit and is rarely 
indicated, although improvement over a period of several months is 
possible. In the nondominant hemisphere, the entire parietal cortex 
posterior to the postcentral gyrus can be removed without inducing 
a sensorimotor deficit. Resection in the parietal operculum may 
produce contralateral lower quadrantic hemianopia if resections are 
carried beyond the depths of the sulci into the white matter. In the 
dominant hemisphere, parietal lobe resections should be limited to the 
superior parietal lobule. Language functions are subserved by cortex 
of the inferior parietal lobule, and a disabling Gerstmann syndrome 
can also result from extensive parietal lobe resection. Large resections 
of occipital cortex produce a contralateral homonymous hemianopia. 
Therefore, if vision is intact preoperatively, the calcarine cortex and 
optic radiations are spared as much as possible. Because cortex essential 
for reading is often more widespread than that for naming, excision 
within 2 cm of Wernicke’s area may cause a persisting dyslexia. The 
vascular territory of each cortical artery or vein should be studied to 
assess the consequences of occlusion of the vessel during surgery. This 
approach is essential to minimize morbidity, especially with surgery on 
the motor and speech areas. Any ascending vein to the superior sagittal 
sinus draining from the central or postcentral sulci should be left intact 
to avoid significant morbidity. 

Preoperative care and anesthesia

It is our practice to reduce the doses of antiepileptic medications 

Resection
Hemispherectomy: resection of the cerebral hemisphere
Lobectomy: resection of one cerebral lobe
Topectomy: resection of a focal area of cerebral cortex
Disconnection
Corpus callosotomy: disconnection of two hemispheres
Multiple subpial transection: disconnection of a focal area of cerebral cortex
Hemispherectomy: Disconnection of a cerebral hemisphere
Stimulation
Vagal nerve stimulation
Anterior thalamic stimulation
Responsive neurostimulation

Table 2: General categories of epilepsy surgery.
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the week before surgery so that the epileptogenic cortex is as active 
as possible during surgery [77]. Some epilepsy centers do not use 
this strategy, particularly in situations in which they will be carrying 
out awake craniotomies. When resecting noneloquent cortical areas, 
general anesthesia can be used [76]. However, when intraoperative 
electrocorticography (ECoG) is required, the use of drugs that depress 
cortical electrical activity, such as benzodiazepines and barbiturates, 
should be avoided. In addition, when functional mapping of speech 
and sensory areas is performed, the patient should be conscious and 
cooperative during the procedure. In this situation, local and total 
intravenous anesthesia with analgesic drugs (fentanyl and droperidol 
or propofol) should be used [78]. Local anesthesia alone has the 
disadvantages of taking more time to create a complete block and 
limiting the range of head positions that can be used. Furthermore, 
it cannot be used with uncooperative patients and young children. 
Constant supervision by a specially trained anesthesia team is essential 
[76].

Intraoperative electrocorticography

Sufficient brain exposure via craniotomy is essential during 
ECoG. ECoG is performed to further delineate the extent of the EZ. 
The intention is to identify regions with primary epileptic neurons 
by identifying brain sites that have interictal ECoG spikes. In our 
experience, there is a clear relationship among the site of interictal 
discharges, the site of ictal onset, and the tissue that must be removed 
to control seizures. This ECoG hallmark is used to determine what 
part of the brain should be resected [72,73,78]. ECoG also provides 
prognostic information by indicating areas with residual discharges 
after cortical resection. Patients with no interictal discharges on 
postresection recordings are more likely to be free of seizures than 
those with persisting discharges [73-79]. For “standard” temporal 
lobectomy surgery, the value of ECoG is not as clear.

Cortical stimulation (Functional mapping)

The purpose of intraoperative cortical stimulation is to localize 
eloquent cortex such as the motor cortex, sensory cortex, or language 
area in the dominant hemisphere. Functional mapping is necessary 
when cortical resections are carried out near eloquent brain areas. 
Identification of motor cortex is useful for any resection in the 
posterior frontal or parietal lobes. Identification of language cortex is 
necessary for any dominant-hemisphere resection in the perisylvian 
cortex and posterior superior frontal lobe. The location of the central 
sulcus is determined by electrical stimulation of the precentral and 
postcentral gyri after preliminary identification by monitoring for 
the SSEP phase reversal. The suspected site of the motor and sensory 
cortex is stimulated and mapped with a motor response detected by 
the anesthetist, measurement by electromyographic electrodes, or 
a report of sensory change by the patient [79]. In practice, the best 
way to identify the postcentral gyrus is to induce sensory responses 
in the tongue area located at the bottom of the postcentral gyrus [80]. 
The frontal, parietal, and temporal language areas in the dominant 
hemisphere are stimulated while the patient carries out simple verbal 
tasks such as naming objects shown on picture cards. A language 
critical area is identified if the patient is unable to speak (speech arrest) 
when the site is being stimulated or if the patient can speak but is 
unable to name objects [75]. Although failure to produce speech arrest 
or anomia does not always exclude the presence of language critical 
sites in the stimulated cortex, intraoperative mapping is nevertheless 
the most reliable method currently available for identifying these 
language critical sites.

Resection technique

Unlike temporal lobectomy, there are no anatomically standard 
operations for extratemporal cortical resection. A craniotomy is 
performed to expose the epileptic focus that will be resected. The extent 
of neocortical resection is based on the gross pathology and the results 
of ECoG and functional mapping. In general, effort is made to resect 
all areas with interictal discharges. Essential motor and language areas 
should be preserved (preferably with a 2 or 1 cm margin), regardless of 
involvement in the epileptic focus. Special attention is also given to the 
vascular supply of the area to be resected. The extent of the resection 
is individually tailored to each case. Meticulous, slow removal of 
epileptogenic gray matter is carried to the bottom of the sulcus without 
damaging vessels within the pia that might supply other nonresected 
tissue. Hemostasis is achieved principally with topical agents such 
as Gelfoam or Surgicel and minimal use of electrocautery. With the 
topectomy procedure, unnecessary resection of the underlying white 
matter is avoided to preserve the integrity of projection, association, 
and commissural fibers. Appropriate antiepileptic medication and 
dexamethasone are administered after cortical resection.

Outcome

Extratemporal nonlesional resection is associated with worse seizure 
control rates and a higher incidence of major postoperative morbidity 
than lesional or temporal lobe resection surgery. Extratemporal surgery 
results in seizure-free rates of 45% and improvement in 35%. More 
recent work shows comparable results. With localized resective surgery, 
less than 5% of patients have some postoperative neurological deficit 
as a result of unintended vascular compromise or other accidental 
damage to essential neural tissue (Table 3). Most of these deficits are 
transient and resolve within months, however. Postoperative bleeding 
and infection are uncommon. Seizures in the acute postoperative 
period may portend a poor prognosis, and most patients will continue 
to require pharmacologic treatment.

Vagal nerve stimulation

Vagal nerve stimulation (VNS) was approved in 1997 for patients 
over 12 years old with partial onset seizures refractory to drugs. There 
has not been a specific survey of VNS for NLNE. However, medically 
refractory partial onset seizures are typically the seizure type for NLNE. 
On average, VNS delivers a 34% seizure reduction at three months, 
and 45% reduction in seizure frequency at 12 months following 
implantation. 20% had greater than 75% seizure reduction and 2% 
of patients become seizure free with VNS. Adverse effects include 
hoarseness, dysphagia, coughing and perception of the stimulation. 
Overall, it is a safe procedure with low morbidity, but not as effective as 
resection. It may be used as an adjunct to medication or after resective 
surgery. One unique feature of the VNS is the magnet current. If a 
patient has an aura, he or she can swipe a wearable permanent magnet 
across the generator under the clavicle and instant stimulation current 
is delivered which can sometimes abort a seizure. 

Seizure Outcome ATL (%) ETR (%)
Seizure Free 2429 (67.9) 363(45.1)

Improved 860 (24.0) 283 (35.2)
Not Improved 290 (8.1) 159 (19.8)

Total 3579 (100) 805 (100)

ATL: Anterior Temporal Lobectomy; ETR: Extratemporal Resection

Table 3: Outcome of temporal and extratemporal seizures [76].
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Deep brain stimulation

Deep brain stimulation of the anterior nucleus of the thalamus 
is not FDA approved, but may have some utility in treating NLNE 
instead of or in addition to surgical resection. The results were initially 
published in 2010, and showed an approximately 50% reduction in 
seizure frequency among study participants in 3 month follow up [81]. 
Recent data showed a 70% reduction in seizure frequency after 5 years. 
The device is approved in the EU and Canada, but awaits FDA approval 
in the United States.

Conclusion
NLNE encompasses a broad range of clinical and pathological 

diagnoses and is associated with greater difficulty in identifying a 
discrete seizure focus than neocortical epilepsy associated with a 
lesion. While there is no “best” diagnostic approach, the overarching 
treatment principle is to localize the epileptic zone as accurately 
as possible by multimodal imaging and iEEG to offer a surgical 
resection with little neurological morbidity. Indeed, every operation 
is customized to each individual patient. NLNE surgery requires a 
more extensive and invasive preoperative diagnostic evaluation than 
temporal lobectomy, and the probability of a seizure free e.g., Class I, 
outcome is lower with this type of epilepsy surgery than with temporal 
lobe epilepsy. Nevertheless, topectomy can decrease and sometimes 
eliminate disabling epilepsy at a reasonable neuropsychological cost. 
Because NLNE seems to afflict a much larger volume of tissue in a 
network fashion, stimulative approaches such as VNS and DBS may 
have primary or adjuvant utility.
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