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Introduction
Posttraumatic Stress Disorder (PTSD) is categorized as both a 

trauma and stress related disorder and may present with a multitude 
of clinically significant symptoms lasting for at least a month. These 
symptoms are a direct result of exposure to a traumatic event such as the 
threat of death, actual death, serious injury, or sexual violence [1]. This 
disorder can affect any demographic, but there is a higher frequency of 
PTSD associated with the female sex, young age, unmarried status, and 
low household income, high levels of trauma exposure, high childhood 
adversity, having low self-esteem, and having a neurotic personality [2]. 
Symptom onset usually occurs within 3 months following the trauma, 
though there may be a significant delay from months to years, termed 
“delayed expression” [3]. A primary criterion for PTSD diagnosis is 
the presence of intrusion symptoms. These symptoms can include 
involuntary and distressing memories, dreams and flashbacks of the 
event, as well as any detrimental psychological and/or physiological 
reactions to cues that remind the patient of the traumatic event [3]. 
Obstinate avoidance of internal (memories, thoughts, feelings, etc.) and 
external (people, places, etc.) stimuli is another criterion important to 
the PTSD diagnosis [1]. Negative associations in cognition and mood 
related to the traumatic event are another hallmark feature of PTSD. 
These negative associations can include the inability to fully remember 
the event, exaggerated negative beliefs regarding oneself or others, 
blaming oneself or others for the event or its consequences, diminished 
interest in activities, a constant negative emotional state and/or inability 
to experience positive emotions, and feelings of social detachment 
[4]. Altered states of arousal are also important for the diagnosis 
of PTSD and may include irritable/angry behavior, an exaggerated 
startle response, reckless behavior, hyper vigilance, problems with 
concentration, and sleep disturbances [5]. PTSD may also present 
with or without dissociative symptoms, such as depersonalization and 
derealization [6]. The severity of PTSD symptoms is inversely related to 
mental and physical functional capabilities [7]. It has also been shown 
that those suffering from PTSD are at an increased risk of committing 
violent crimes against their intimate partner [8]. Unfortunately, this 
may propagate the problem by causing the partner to become inflicted 

with PTSD symptoms themselves, especially when coupled with 
violence-related traumatic brain injury (TBI) [9].

While most people will experience a traumatic event deemed 
sufficient to cause PTSD [10], there is less than a 10% lifetime PTSD 
prevalence among the general population [11]. PTSD disproportionally 
affects returning combat veterans compared to the general population 
[7]. According to the U.S. Department of Veterans Affairs, it is estimated 
that up to 30.9% of Vietnam veterans, 10.1% of Gulf War veterans [12], 
and 13.8% of Operation Enduring Freedom/Operation Iraqi Freedom 
have been afflicted with PTSD [13]. A potential underlying factor 
contributing to the relatively high rates of PTSD seen in veterans is 
the occurrence of a TBI. In the span of approximately 15 years (from 
January 1, 2000 to June 5, 2015) there have been over 327,000 cases of 
TBI and over 138,000 cases of PTSD among U.S. military personnel, 
many of which are comorbid [14,15]. It has been shown that mild TBI 
(mTBI) is strongly associated with PTSD [2], especially when the mTBI 
is blast-related or coupled with loss of consciousness [16,17]. Along 
with this association, the presence of TBI and/or PTSD is often difficult 
to ascertain due to the common comorbidity of the two conditions 
as well as their overlapping symptomology [14,18,15]. Fortunately, 
modern neuroimaging techniques (such as Single-Photon Emission 
Computed Tomography) show promise in helping to distinguish 
between the two conditions [14,18]. While the occurrence of TBI is 
one potential contributing factor, there has been significant research 
regarding the hypothalamic-pituitary-adrenal (HPA)-axis and its role 
in the development of PTSD.  
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Underlying pathophysiology of PTSD

PTSD was previously thought to be the body’s natural response to 
a traumatic event, sharing a similar neurological response profile like 
stress. New research suggests however, that the adaptation response in 
PTSD does not reflect the specific changes you would see in a typical 
stress response profile [19]. A major pathway implicated in PSTD is the 
Hypothalamic Pituitary Adrenal Axis (HPA-axis) [19,20].

Molecular mechanisms

The HPA-axis is an important component of the neuroendocrine 
system and is comprised of a set of interactions between the 
hypothalamus, the pituitary gland, and the adrenal glands. The effects of 
the HPA-axis are modulated by the effects on glucocorticoids [21,22]. The 
responsibility of this axis is to coordinate neural and endocrine signaling 
in response to perceived stress via signaling from the periventricular 
nucleus, which in turn stimulates the release of corticotrophin-releasing 
hormone, and subsequently adrenocorticotrophic hormone [21,23]. 
Adrenocorticotrophic hormone is released into the general circulation 
where it stimulates the production of the glucocorticoids from the adrenal 
cortex. The glucocorticoids bind to various glucocorticoid receptors, 
and exert effects throughout the body [21]. HPA-axis dysfunction 
is implicated in multiple mental health disorders, including PTSD 
[21]. One theory underlying HPA-axis dysfunction and PTSD is that 
common glucocorticoid receptor polymorphisms, N363S and Bcl1, have 
an effect on PTSD frequency. Unfortunately, no significant associations 
were observed between these glucocorticoid receptor polymorphisms 
and PTSD development [24]. Another study probed for associations 
between the FKBP5 gene, which helps to regulate glucocorticoid 
sensitivity, and PTSD frequency. It was found that a single nucleotide 
polymorphism (SNP) of the FKBP5 was significantly associated with 
increased lifetime PTSD rates [25]. The same study also examined the 
association between PTSD and CRHR1, a neurotransmitter involved 
in corticotrophin-releasing hormone activity. CRHR1 is also known 
to regulate HPA-axis function and is associated with the impact that 
a traumatic event exposure has on an individual [25]. Polymorphisms 
of this gene were shown to have significant association with increased 
PTSD rates among participants [25,26]. Another potential underlying 
factor of PTSD is the Apolipoprotein E (APOE) gene that has some 
effect on regulation of the HPA-axis [27,28]. Genetic analysis of the 
Apolipoprotein E (APOE) gene yielded conflicting results in that 
there was no significant association between APOE polymorphisms 
and PTSD frequency among all veteran participants [2]. In the non-
Hispanic African American population however, those with APOE Ɛ4 
allele homozygotes who were exposed to high levels of combat showed 
significantly higher rates of PTSD with worsened symptom severity 
[29]. While genetic polymorphisms affecting the HPA-axis have a role 
in predicting PTSD frequency, there are a multitude of other genes 
that when mutated, will exert an effect on the likelihood of PTSD 
development. These genes include RGS2, COMT, CHRNA5, TNFα, 
DRD2, BDNF, ANK3, and ANKK1 (Table 1) [25,2,30-34]. 

Adaptability of the HPA axis in stress

Upon exposure to an acute stressful stimulus, the hypothalamus 
secretes corticotrophin-releasing factor (CRF), vasopressin and other 
regulatory neuropeptides to the anterior pituitary causing the release 
of adrenocorticotrophic hormone (ACTH) [35]. ACTH travels to the 
adrenal gland, binds to its corresponding receptor on the adrenal cortex 
and influences the release of cortisol, a chemical-mediator well known 
to decrease stress. Simultaneously, there is a release of dose dependent 
catecholamine (Norepinephrine and Epinephrine), which results in a 

coordinated response from multiple organs preparing to respond to an 
acute stress. This dose dependent release is relative to the severity of the 
stressful stimuli [36]. When the stressor is removed, a negative feedback 
restores the molecules released in excess back to their homeostatic levels 

[37,38]. In chronic stress, sustained cortisol release acts tonically on 
the HPA-axis to decrease the release of cortisol via negative feedback 
inhibition [20].

Neural alterations of the HPA axis in PTSD

Cortisol alterations: In order for cortisol to exert its effect on 
the body, it must be able to bind to glucocorticoid receptors. The 
glucocorticoid receptor in major depressive patients exhibits an 
attenuated response in the presence of cortisol [39,40]. In contrast, 
PTSD patients from studies conducted on combat veterans showed 
that these receptors appear to have a more sensitive response to 
steroids like cortisol [41]. When a dexamethasone suppression test was 
conducted on PTSD patients, Yehuda et al. found that strong receptor 
suppression occurred at the HPA-axis at low dexamethasone levels 
(0.5mg) compared to high levels of dexamethasone in PTSD patients 

[41]. This finding gives clarity to the presence of high CRF levels and 
low cortisol concentrations in PTSD due to the enhanced inhibitory 
feedback of cortisol at low levels because of the increased sensitivity of 
the glucocorticoid receptors [41,42].

Norepinephrine alterations: In humans, norepinephrine released 
from the locus ceruleus is involved in the regulation of mood, emotion 
and alertness (fight or flight) through increased peripheral sympathetic 
activity [43]. In the pathophysiology of PTSD, this sympathetic increase 
is exaggerated and observed as a high systolic and diastolic pressure 
with a concomitant increase in heart rate in PTSD veterans [44,45]. 
Studies have been conducted that measured the urinary catecholamine 
levels in patients with PTSD versus patients with other psychiatric 
conditions (Table 2). It was found that patients who had PTSD had 
higher levels of urinary catecholamine compared to patients with other 
psychiatric conditions or compared to patients who suffered a traumatic 
event without PSTD [46]. Another study that measured cerebrospinal 
fluid (CSF) norepinephrine levels came to the same conclusion. There 
was a rise in CSF norepinephrine levels when war-related PTSD 
veterans where exposed to combat themed videos, which correlated 
to worsening of mood in these veterans [47]. Consider other evidence 
from experiments conducted by pietrzak et al. showing that there was a 
decrease in the number of norepinephrine reuptake transporters in the 
locus ceruleus of PTSD patients compared to patients exposed to trauma 
without PTSD. These findings strengthen the proposed hypotheses 
of brain alterations in PTSD with changes in norepinephrine levels 
compared to normal patients [48,49]. 

Minor neurotransmitter alterations: Serotonin produced in the 
dorsal raphe nucleus is chronically low in PTSD and can lead to anxiety, 
impulsivity and aggressive-like behaviors. Another neurotransmitter 
thought to play a role is Dopamine but its role is not well understood 
because low levels of dopamine produce anhedonia, apathy and 
impaired attention seen in PTSD while high levels contribute to the 
agitation and restlessness [50].

Physiologic and functional progression of PTSD

The theoretical mechanism of PTSD is not known but it is likely 
influenced by various factors that could potentially increase mortality 
and morbidity. Disruptive mechanisms of the HPA-axis and adrenal 
gland in PTSD have been implicated as a risk factor for the development 
of cardiovascular disease (CVD). Elevated catecholamine levels in 
PTSD simultaneously increase the risk of CVD due to its direct effect 
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on the heart, blood vessels, and platelets. Consequentially this increase 
leads to an increased blood pressure and increased coagulation [51-53]. 
Chronic inflammation is also an important mechanism that is thought 
to play an important role in increased CVD risk of PSTD patients. Kanel 
et al. showed that the severity of PTSD symptoms was associated with 
the levels of increased inflammatory mediators like Tumor necrosis α 
and interleukin1β [54]. 

Wilson et al investigated whether oxidative stress and inflammation 
increase in the brain, adrenal gland and systemic circulation during the 
progression of PTSD in male rats exposed to predator cats. The results 
showed that PTSD rats experienced a diminished growth rate, increased 
adrenal gland weight and a decreased thymus weight after the 31-day 

experiment. There was also an increase in the total levels of reactive 
oxygen species (ROS) in the hippocampus, prefrontal cortex and adrenal 
glands of PTSD rats. Inflammatory mediators were also significantly 
increased in the brain, systemic circulation and adrenal gland [55]. 
These findings demonstrate a course of PTSD as a progressive systemic 
condition influenced by certain behavioral risk factors.

Current treatment approaches

To date, there are no approved treatments for individuals with PTSD 
and TBI. Treatment for PTSD can be categorized as pharmacologic 
and non-pharmacologic, with treatment recommendation guidelines 
indicating stronger support for cognitive behavioral therapy (CBT) 

Author Population Gene of Interest Results
Amstadter 
et al. 2009 Hurricane Victims RGS2 Polymorphism (rs4606) Participants with the rs4606 polymorphism showed increased PTSD development and 

symptom severity in those exposed to a traumatic event with low social support. 

Bachmann 
et al. 2005 Veterans (Vietnam)

Glucocorticoid Receptor (GR) 
Polymorphisms (N363S and 

BclI)

The frequency of GR polymorphisms were not increased in participants with PTSD. No 
changes in glucocorticoid sensitivity were observed in the PTSD group. The common 

GR polymorphisms observed in this study do not contribute to the risk of PTSD 
development.  

Boscarino 
et al. 2012

Non-malignant chronic pain 
patients

FKBP5, COMT, CHRNA5, and 
CRHRI polymorphisms

Significantly higher rates of lifetime PTSD were observed in participants with SNPs in 
the four target genes: FKBP5 (rs9470080), COMT (rs4680), CHRNA5 (rs16969968), 

and CHRR1 (rs110402).
Bruenig  

et al. 2017 Veterans (Vietnam) TNFα Polymorphism 
(rs1800629)

In a dominant model, significant associations were found between the TNFα rs1800629 
polymorphism in the promotor region of the gene and the development of PTSD.

Dretsch  
et al. 2015

Veterans (Operation Iraqi 
Freedom/Operation Enduring 

Freedom)

APOE, DRD2, and BDNF 
Polymorphisms

A significant predictor of PTSD development was the BDNF Val66Met (rs6265) SNP. 
This BDNF polymorphism also correlated with significantly higher risk of incurring a mild 
TBI. There were no significant differences in PTSD (or TBI) frequency among any of the 

other observed genotypes. 

Kimbrel  
et al. 2015 Veterans (Iraq/Afghanistan-Era) Apolipoprotein E Ɛ4 Allele 

(APOE Ɛ4)

Significant effects were observed in non-Hispanic black veterans where APOE Ɛ4 
homozygotes exposed to high levels of combat experienced increased rates of PTSD, 

psychiatric comorbidity, and worse symptom severity when compared to APOE Ɛ4 
heterozygotes and non-carriers.

Logue  
et al. 2013

Veterans and their intimate 
partners ANK3 Polymorphisms There was a significant association with three ANK3 SNPs (rs28932171, rs11599164, 

and rs17208576) and the diagnosis of PTSD. 

Voisey  
et al. 2009 Veterans (Vietnam)

DRD2 Polymorphisms (SNP 
C957T,  deletion polymorphism 
-141delC) and DRD2/ANKK1 
Polymorphisms (SNP Taq1A)

A significant increase in PTSD susceptibility was observed for the CC genotype of the 
C957T polymorphism. There was no significant association observed for the -141delC or 

Taq1A polymorphisms. 

White et al. 
2013 Hurricane Victims CRHR1 Polymorphisms 

A significant increased risk for developing PTSD symptoms was observed in carriers of 
the rs12938031 and rs4792887 CRHR1 polymorphisms. The rs12938031 polymorphism 

was also found to be significantly associated with PTSD diagnosis. 

Winkler  
et al. 2017

Trauma patients experiencing an 
isolated and uncomplicated mild 

traumatic brain injury (mTBI).
COMT Polymorphism (rs4680)

The COMT Val158Met polymorphism (rs4680) is associated with increased frequency 
of PTSD and a poorer functional outcome following mTBI. The COMT Met158 allele is 

associated with lower PTSD frequency and improved functional outcome following mTBI.

Table 1: Genetic influences on PTSD.

24 hour urine Never PTSD Lifetime PTSD Current PTSD P-value
Cortisol (N:304/97/193)     

Mean(SD) 30.9 (21.1) 23.5 (14.6) 27.2 (20.2) p=0.004 *
Log transformed 3.2 (0.7) 3.0 (0.7) 3.1 (0.7) p=0.002 *

Epinephrine (N:314/100/199)     
Mean(SD) 3.9 (3.0) 3.4 (2.5) 4.1 (3.5) p=0.18

log transformed 1.1 (0.8) 0.9 (0.8) 1.1 (0.8) p=0.22
Norepinephrine (N:314/100/199)     

Mean(SD) 50.96 (24.2) 51.62 (28.3) 57.17 (27.9) p=0.03 **
Log transformed 3.80 (0.6) 3.79 (0.6) 3.93 (0.5) p=0.02 **

Dopamine (N:314/100/198)     
Mean(SD) 187.6 (99.2) 188.0 (104.1) 190.6 (95.0) p=0.94

Log transformed 5.1 (0.6) 5.1 (0.6) 3.9 (0.6) p=0.78
Urine creatinine over 24 h 1610 (504) 1566 (559) 1645 (548) p=0.46
Serum creatinine (mg/dl) 1.0 (0.3) 1.0 (0.2) 1.1 (0.3) p=0.22

Table  2: 24 h urinary cortisol and norepinephrine in participants by PTSD status. Total: 613 participants, 199 (32.5%) had current PTSD, 100 (16.3%) had lifetime but not 
current PTSD, and 314 (51.2%) never had PTSD. The Table shows that a significant increase in cortisol and norepinephrine17. *= denotes significance
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than medication interventions [56]. The greatest number of studies 
have been conducted on exposure-based treatments, with evidence 
supporting its use regardless of the type of trauma and comorbidities 
[57]. Exposure-based treatments involve having survivors repeatedly re-
experience their traumatic event. Of the various approaches to exposure 
therapy, prolonged exposure (PE) has received the most attention 
[57]. PE aims toward fear extinction through both imaginal exposure 
(in which a patient repeatedly recounts memories of a trauma) and in 
vivo exposure (in which a patient is exposed to distressing situations 
in the present). Cognitive processing therapy (CPT), which focuses 
on challenging and modifying maladaptive beliefs related to trauma, 
is also widely supported in the treatment guidelines [56]. In addition 
to CBT, eye movement desensitization and reprocessing (EMDR) has 
been shown to be significantly effective, though the evidence base for 
EMDR has not been as strong as that for CBT [58]. Patients receiving 
EMDR engage in imaginal exposure to a trauma while simultaneously 
performing saccadic eye movements. 

Despite their demonstrated efficacy in PTSD, only a few studies 
thus far have suggested that CBT may be an effective strategy to treat 
PTSD in patients with co-morbid PTSD and TBI. In a recent review 
of the literature on PTSD and TBI in 2014, Tanev et al. [59] suggests 
that PTSD treatments may be promising in individuals with co-morbid 
TBI, but the impact of TBI on the ability of patients with PTSD to 
benefit from the different forms of CBT, especially those with impaired 
cognition, remains to be elucidated. It would therefore be important to 
include a control group of subjects with PTSD but without TBI in future 
studies to examine first line CBT approaches in patients with co-morbid 
PTSD and TBI [59]. 

Among pharmacologic treatments, the strongest evidence exists 
for selective serotonin reuptake inhibitors (SSRIs). The only two FDA 
approved medications for PTSD are the SSRIs, sertraline and paroxetine. 
From the VA/DoD Clinical Practice Guidelines for PTSD, these SSRIs 
as well as fluoxetine (another SSRI) and venlafaxine (a serotonin 
norepinephrine reuptake inhibitor) are first-line recommended 
treatments based on large multi-site randomized clinical trials [60]. 
The guidelines also concluded that there is some benefit from and 
recommendations for the use of mirtazapine, prazosin (for nightmares/
sleep), tricyclic antidepressants, nefazodone (with caution regarding liver 
failure) and monoamine oxidative inhibitors (with caution regarding 
drug-drug interactions and strict dietary controls) [60]. Compared to 
non-pharmacologic treatments, the evidence base for pharmacological 
treatments in co-morbid PTSD and TBI is even more limited. In the 
absence of randomized controlled trials, experts have recommend the 
following general principles [60] take a comprehensive approach, be 
aware that TBI is associated with a variety of other neuropsychiatric 
sequela; [61] obtain diagnostic clarity and initiate treatment trials with 
one agent at a time, with a clear diagnostic formulation (e.g., “I am 
treating TBI related cognitive deficits,” or “I am treating PTSD related 
sleep disturbance”); [62] begin with lower doses and use longer titration 
intervals because of heightened sensitivity to side-effects in patients 
with TBI; and [14] use longer treatment durations to assess efficacy 
because both TBI and PTSD are associated with heightened reactivity to 
environmental changes [63]. 

Of interest for future studies would also be whether the combination 
of medication and cognitive therapies is more effective than either 
treatment alone in patients with co-morbid PTSD and TBI. Based upon 
current knowledge, most prescribing clinicians view pharmacotherapy 
as an important adjunct to the evidenced based psychotherapies for 
PTSD rather than as mono therapy [64]. When using a combined 

approach of medication and therapy for PTSD, it is important to keep 
in mind the following practices: [60] coordination of care and treatment 
responses between therapist and clinician if they are separate entities 
[61] ongoing dialogue regarding medications and their side effects 
between clinician and patient; and [62] active patient role in his or her 
treatment [64]. These same practices should be applied to those with 
PTSD and TBI. 

Novel treatment strategies

As mentioned above, the mainstay of current PTSD treatment 
includes psychological therapy, CBT, and eye movement desensitization 
and reprocessing as well as use of antidepressant medications. However, 
only 20-30% of PTSD patients achieve complete remission, while 
the remaining 70-80% continues to be refractory to these treatment 
modalities [65]. Current investigations into novel therapies for 
treatment-refractory PTSD focus on modulation of the neuroanatomical, 
pathophysiological and molecular substrates of PTSD. 

Central to the pathophysiology of PTSD is dysfunction of 
Pavlovian fear conditioning, characterized by impaired extinction and 
generalization of the conditioned fear. The amygdala and hippocampus 
have been implicated in the neurocircuitry of fear conditioning and fear 
generalization [66]. Neuro-functional imaging and lesional studies have 
shown that over-activity of the basolateral amygdala (BLn) is essential 
for the development of the clinical manifestation of PTSD [67]. These 
studies have established the basolateral amygdala as a specific target 
for modulation as a novel therapy for PTSD. Deep brain stimulation 
(DBS) is a treatment modality in which electrodes are stereotactically 
implanted into a specific brain target, which is then electrically 
stimulated to modulate its activity [68]. Studies have shown that rats 
traumatized by inescapable shocks, in the presence of a conspicuous 
object, had the tendency to bury the object when re-exposed to it 28 
days later [69]. Using this pre-clinical model of PTSD, Langevin et al. 
found that rats treated with BLn DBS spent on average 13 times less 
time burying the ball than the sham control rats. The treated rats also 
spent 18 times more time exploring the ball than the sham control rats 
[70]. In a follow up study, Stidd et al. compared the effect of paroxetine 
(a serotonin selective inhibitor currently used to treat PTSD) with 
BLn DBS using the pre-clinical PTSD model. Paroxetine was found to 
decrease the measured general anxiety level of rats that underwent the 
PTSD protocol, but did not counteract shock-induced hyper-vigilance 
toward the trauma-associated object (ball). BLn DBS, however, did 
decrease shock-induced hyper-vigilance as measured by a lower burying 
time, but had no effect on general anxiety assessed in the elevated plus 
maze [71]. Based on these pre-clinical studies, a clinical trial is currently 
underway assessing basolateral amygdala DBS for treatment of PTSD 
in combat veterans (ClinicalTrials.gov Identifier: NCT02091843). 
The first case enrolled in this trial was a 48-year-old combat veteran 
with a baseline Clinician-Administered PTSD Scale (CAPS) score was 
119, classifying him among the most severely ill patients. At 8 months 
after bilateral BLn DBS, the patient experienced a substantial clinical 
improvement and a 37.8% reduction in CAPS score from baseline [72]. 
The final results of this clinical trial will help determine the efficacy of 
BLn 

DBS for the treatment of PTSD

The hippocampus plays an essential role in memory formation and 
it is thought that hippocampal dysfunction may be associated with the 
impaired extinction and generalization of the conditioned fear seen in 
PTSD [73]. The hippocampus is unique in being one of two sites in the 
adult brain where neurogenesis occurs (the sub ventricular zone being 
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the other site) [74]. Neurogenesis involves the proliferation of neural 
stem cells, their migration and differentiation into adult neurons. 
Studies have shown that loss of neural stem cells in the hippocampus 
is associated with clinical conditions of dementia such as Alzheimer’s 
disease [75]. Several studies have demonstrated that neurogenesis 
in the hippocampus is impaired in PTSD [61,76]. As mentioned 
above, generalization of fear is one of the central features of PTSD. 
Generalization is thought to result from failure of pattern separation, 
which is mediated by the hippocampus. Pattern separation occurs in 
the dentate gyrus (part of the hippocampal formation) when highly 
similar input firing patterns are coded into less similar output firing 
patterns within granule cell population of the dentate gyrus [77]. 
Neurogenesis is responsible for replacing worn out granule cells in the 
hippocampus. Thus, in clinical conditions associated with memory 
loss, there is loss of hippocampal granule cells, resulting in loss of 
hippocampal volume [78]. In a meta-analysis of studies that evaluated 
hippocampal volumes in PTSD, Ahmed-Letaio et al. found that PTSD 
patients had significantly reduced bilateral hippocampal volumes 
compared to healthy controls [62]. From the therapeutic standpoint, 
no treatment of PTSD targeting neurogenesis has been yet developed. 
Experimentally, neurogenesis may be harnessed for therapeutic 
purposes by promoting endogenous neurogenesis in the hippocampus 
or transplanting exogenous neural stem cells into the hippocampus. 
Modulation of endogenous neurogenesis in the hippocampus may be 
achieved by the use of biologics that stimulate the molecular pathways 
involved in neural stem cell proliferation, migration and differentiation. 
Using a rat model of PTSD, Nie et al. found that administration of 
rosmarinic acid (a component of Chinese herbal medicine) alleviated 
PTSD-like symptoms in rats exposed to an enhanced single prolonged 
stress paradigm and restored hippocampal proliferation and pERK1/2 
expression. The effects of rosmarinic acid were inhibited by the 
blockage of the ERK signaling [79]. Further evidence of pERK1/2 
modulation for the treatment of PTSD comes from the study by Peng 
et al., who demonstrated that administration of ziprasidone (atypical 
antipsychotic drug used for treating PTSD) reversed the anxiety-like 
behaviors in rats that exposed to an enhanced single prolonged stress 
paradigm, and also restored the proliferation and the protein expression 
of pERK1/2 and Bcl-2 in the hippocampus [80]. One of the main 
challenges to development of therapeutics for stimulating hippocampal 
neurogenesis is the impermeability of the blood brain barrier to most 
biologics. An alternative is the surgical transplantation of exogenous 
neural stem cells into the hippocampus. Wei et al. induced traumatic 
brain injury (TBI) and posttraumatic brain injury in Wistar rats. Three 
days after TBI, rats were treated with intracranial transplantation of 
either mouse iPSC-derived neural progenitor cells under normal culture 
conditions (N-iPSC-NPCs) or mouse iPSC-derived neural progenitor 
cells pretreated with hypoxic preconditioning (HP-iPSC-NPCs). 
They found that the HP-iPSC-NPC-transplanted animals showed a 
unique benefit of improved performance in social interaction, social 
novelty, and social transmission of food preference tests compared 
to vehicle, which was mediated by up regulation of social behavior-
related genes, oxytocin and the oxytocin receptor [81]. The challenges 
to direct transplantation of neural stem cells for therapeutic purposes 
include non-survival of transplanted cells over the long-term and also 
the potential for malignant transformation. These challenges must be 
overcome through further research before neural stem cells can be 
harnessed for the treatment of PTSD. 

Another area of active investigation for the development of 
novel therapeutics for PTSD is epigenetic modification such as DNA 
methylation and post-translational histone modifications. Important 

mediators of epigenetic modification include microRNAs (miR). 
Micro RNAs are single stranded, non-coding RNA short fragments 
with 19-24 nucleotides that function in RNA silencing and gene 
regulation by binding to complementary sequences on messenger RNA 
(mRNA) [82]. It is believed that 30% of human genes are regulated 
by miR and that 80% of miRs are tissue-specific. miR signatures of 
various psychiatric disorders have been characterized. Balakathiresan 
et al. evaluated miR expression in the serum and amygdala using a 
pre-clinical model of PTSD in rats. They found a panel of nine stress-
responsive miRNAs, namely; miR-142-5p, miR-19b, miR-1928, miR-
223-3p, miR-322∗, miR-324, miR-421-3p and miR-463∗ and miR-674∗, 
which may have potential as biomarker(s) for PTSD. Further analysis 
revealed five miRs, miR-142-5p, miR-19b, miR-1928, miR-223 and 
miR-421-3p, which may play a potential role in the regulation of genes 
associated with delayed and exaggerated fear [83]. Zhou et al. also 
analyzed the peripheral mononuclear cells and various lymphocyte 
subsets in combat veterans and found that the percentage of Th1 cells 
and Th17 cells increased, regulatory T cells (Tregs) decreased, while Th2 
cells remained unaltered in PTSD patients. High-throughput analysis 
of mononuclear cells for 1163 miRs showed significant alteration in 
number of miRs and also revealed a relationship between selected 
miRNAs and genes that showed direct/indirect role in immunological 
signaling pathways [84]. Furthermore, Wingo et al. conducted 
genome-wide differential gene expression survey on patients with 
post-traumatic stress disorder (PTSD) with comorbid depression and 
found that blood DICER1 (a regulator of miR expression) levels were 
significantly reduced [85]. Taken together, these studies demonstrating 
a role of miR in the pathogenesis of PTSD, indicate that miR signatures 
in PTSD may represent potential therapeutic targets. However, further 
research is required in defining the exact role of miRs in PTSD before 
therapies can be developed. Currently, the only available miR-based 
therapeutic is miravirsen, which targets hepatitis C viral infection [86]. 
To develop similar treatments for PTSD, the significant challenge of 
blood-brain barrier permeability must be overcome.

Another potential treatment modality for PTSD, which is currently 
under investigation, is hyperbaric oxygen therapy (HBOT). HBOT is 
defined as the delivery of 100% pressures greater than 1 Atmospheres 
Absolute while the patient is being pressurized in a chamber. HBOT 
is increasingly being used a field treatment modality in various 
military establishments such as NATO in Afghanistan and Iraq, 
where servicemen and women are frequently exposed to blast-induced 
traumatic brain injury and PTSD [87]. HBOT has been shown to 
mediate tissue healing via a variety of mechanisms including increasing 
oxygen delivery, stimulation of stem cell proliferation, reduction in 
apoptosis, up regulation of growth factors, production of antioxidant, 
and inhibition of inflammatory cytokines [88]. These molecular 
mechanisms of HBOT make it an attractive option for treatment 
PTSD as has been demonstrated in both pre-clinical and clinical 
studies. Peng et al. showed that hyperbaric oxygen preconditioning 
was able to significantly preserve viable neurons in the CA1 subfield 
of hippocampus in rats following single prolonged stress exposure, 
as evidenced by decreasing CA1 neuronal apoptosis. Furthermore, 
hyperbaric oxygen preconditioning was able to up regulate the 
expression of thioredoxin reductase and ameliorated anxiety-like 
behavior and cognitive impairments induced by the single prolonged 
stress [89]. Recently, a phase I clinical trial of HBOT was conducted 
among war veterans. The study demonstrated that HBOT resulted in 
significant improvement in symptoms, neurological exam, full-scale 
IQ, WMS IV Delayed Memory, WMS-IV Working Memory and 
quality of life, among other measures. Theses clinical improvements 
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were associated with diffuse improvements in regional cerebral blood 
flow as measured by SPECT [90]. A meta-analysis of eight studies on 
HBOT showed that patients undergoing hyperbaric therapy achieved 
significant improvement in the GCS and GOS with a lower overall 
mortality [91]. The novel treatment modalities outlined above are 
summarized in Figure 1.

Summary
PTSD continues to cause significant morbidity and mortality and 

the incidence of the disorder is expected to increase as more and more 
servicemen and women return home from war duties. Thus, the need 
for developing novel therapies for combating this clinical condition 
cannot be overemphasized. Current study has focused on the HPA axis, 
but new work has highlighted the need to investigate fear circuitry and 
neurogenesis. To improve on the current treatments and to overcome 
the challenges of developing novel therapies, further research is needed 
that focuses on elucidating the molecular mechanisms of PTSD, better 
understanding the pathophysiology, and establishing early diagnostic 
criteria. These goals can be achieved through rigorous pre-clinical 
research that will extend forward into clinical trials. 
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