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Introduction
The robust control of upright standing posture is influenced by many 

physiological (e.g., muscular, motor and sensory) and environmental 
(e.g., support surface and context) factors. In this commentary, we will 
focus on how two complex systems analysis techniques, multiscale 
entropy (MSE) and detrended fluctuation analysis (DFA), can provide 
insights into the nature of postural fluctuations within and between 
different time scales. Finally, we discuss the generalized pattern of results 
observed in MSE and DFA and suggest that, when used together, these 
techniques may reveal how the system responds to disease progression 
and how this can be used to identify both adaptive and maladaptive 
changes in postural fluctuations.

Dynamical systems techniques are increasingly being applied in 
the assessment of postural control changes due to aging and disease 
[1-3]. In this commentary we focus on MSE and DFA as they have been 
used empirically to reveal how disease and aging affect the complexity 
and fractality of postural fluctuations, respectively. MSE reveals the 
complexity of COP fluctuations, whereby a signal is considered to be 
complex if it displays point-to-point fluctuations that are indicative of a 
high entropy value across a range of physiologically relevant time scales 
[4,5]. By evaluating several time scales, MSE can distinguish random, 
maladaptive changes in physiological fluctuations from those of a 
healthy system [2]. Single time scale approaches may yield confusing 
results such that, depending on the time scale evaluated, physiological 
fluctuations derived from pathological systems (e.g. heart disease) may 
exhibit entropy values that are both larger and smaller than those from 
healthy systems [2]. DFA is a technique that provides information 
regarding the adaptability of postural control through an assessment of 
the COP fluctuations at different time scales, and how these fluctuations 
at various time scales relate to each other. Specifically, we will provide 
examples of adaptive and maladaptive changes in postural control 
based on DFA analysis, and how these changes can provide insights into 
the limitations and redundancy of the physiological systems underlying 
the control of upright standing in health and disease.

Multiscale Entropy
Approximate entropy is a measure of entropy that has been used 

to demonstrate that persons with MS display increased regularity in 
their COP fluctuations [6]. However, this technique has substantial 

methodological shortcomings and we therefore recommend against 
its use [4,7]. The advantages of MSE over other entropy techniques 
are two fold: 1) It allows an examination of the complexity of postural 
fluctuations over a range of physiologically relevant time scales, and 
2) it uses the sample entropy algorithm to assess complexity at each 
time scale. Sample entropy eliminates the self-matching bias found in 
the approximate entropy technique [7]. Furthermore, the numerical 
integration of the entropy values across the time scales of interest allows 
for a more comprehensive estimation of the complexity in the system 
[2]. Several data acquisition and analysis aspects need to be taking into 
account when applying MSE, including: length of time series, filtering 
and MSE parameters (see [2,4,5,7] for more detailed discussion). MSE 
quantifies the point-to-point fluctuations over a range of time scales. 
This analysis requires a large amount of meaningful data (i.e., not just 
high sampling frequencies). Specifically, we and others have previously 
noted that MSE requires 200 data points at any time scale to provide 
stable and reliable results [4,8]. As MSE requires signal stationarity, a 
number of different methods have been used to achieve this, including 
detrending the time series using empirical mode decomposition, high 
pass filtering the data to remove slow drifts, and differentiating the COP 
position time series to remove non- stationarities [1,9]. Furthermore, 
determining the similarity criterion (r) for points in the time series can 
have a major impact on the results [2,4,5]. Comparing and interpreting 
the results of studies that use different r values is difficult and could 
result in erroneous conclusions of difference/similarity in entropy 
and complexity. Additionally, m is the parameter in the MSE process 
that defines the distance between data points that is being compared 
for similarity. This value is often set to the minimum of m=2. In single 
time scale approaches, this parameter can be changed to observe the 
similarity of fluctuations over different time scales. However, the course 
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graining procedure in MSE, which averages non-overlapping windows 
of the original dataset to create new time series, largely replaces the 
use of different values of m other than 2 as a way to gain insight into 
fluctuations at different time scales.

We recently evaluated changes in postural fluctuations using MSE 
in people with MS and observed lower COP complexity during quiet 
and perturbed standing compared to controls [1]. These results while 
yet to be replicated, are consistent with other reports of changes in 
complexity with aging and in those with a history of falls [9]. Costa 
and colleagues also showed that application of subsensory vibrations 
to the soles of the feet, stochastic resonance, increased MSE values 
(i.e., postural complexity) in healthy older adults to values similar to 
those observed in younger participants [9]. These results suggest that 
subsensory noise added to the soles of the feet can improve postural 
control affected by frailty due to aging and disease.

Detrended Fluctuation Analysis
The MSE analysis presented above can be used to identify changes 

in postural control processes at a range of different time scales, and 
provides an overall measure of postural complexity. Similarly, DFA 
is a technique that is used to identify interactivity between processes 
occurring at different temporal scales. In a healthy system, physiological 
fluctuations occurring at short time scales are correlated to those at 
longer time scales, and these correlations breakdown with aging and 
disease [10-12]. A system exhibits structured yet complex behavior 
when fundamental biological processes (e.g. protein or cellular 
function) are reflected in systemic fluctuations (e.g. whole body sway). 
DFA is a modified random walk analysis (for detailed description of the 
algorithm, see Peng et al. [10]), in which the signal is integrated and 
sectioned into non-overlapping windows of various lengths. Within 
each window, a root-mean-square analysis of the local trend line is used 
to quantify the magnitude of fluctuations. Displaying the amplitudes of 
fluctuations and scale sizes on a double logarithmic plot, the slope of the 
relationship, known as the scaling exponent (α), represents the degree 
to which fluctuations are scale invariant, also known as fractality. α=1.0 
represents signals that are scale invariant (e.g. ‘pink noise’). When 0.5<α 
≤ 1.0, the signal is correlated, whereby fluctuations in one direction 
tend to be followed by fluctuations in the same direction. White noise 
has α=0.5, indicating that the signal is absent of long-range correlations. 
Finally, when α>1.0, the signal approaches Brownian motion (α=1.5), 
that is the signal has random steps on short time scales but the total 
distance traveled is a function of the number of steps taken.

DFA is sensitive to a number of methodological considerations 
including parameterization and data reduction. The main parameter 
consideration is the sizes of the windows. It has been recommended 
that these windows should not be shorter than 4 data points and no 
larger than N/4 data points, where N is the number of samples in the 
data set [12]. Applying a low-pass filter (for example, at 5 Hz) reduces 
small-amplitude fluctuations within the smaller window sizes, and has 
been suggested as a means of observing aspects of ‘central’ control, and 
display fractal scaling exponents between 1.0>α>1.5 [13]. That is, the 
dynamics exhibit highly persistent and borderline Brownian patterns. 
Applying a high pass filter (for example, 10 Hz) will reduce large-
amplitude fluctuations in the larger windows, and has been proposed 
as a mechanism to observe ‘peripheral’ control, and display scaling 
exponent values between 0.55 and 0.75 [13]. These fundamentally 
different α values highlight how changes in signal processing can 
impact the interpretation of the fractal nature of the signal. Postural 
COP signals of young, healthy adults have been examined and indicate 
the presence of fractality [13-15]. However, it is currently not clear 

how the onset or progression of MS impacts the fractal dynamics of 
postural control. This is important, considering those with MS exhibit 
multifactorial deficits occurring across numerous sensorimotor time 
scales, and these deficits may manifest as altered fractality. We recently 
examined the relationship between cutaneous sensory thresholds 
at the feet and the fractal nature of postural fluctuations in healthy 
young subjects [16]. We found that when the sensory thresholds are 
elevated by cooling the soles of the feet (i.e., impairing sensation) 
to threshold levels observed in individuals with MS, DFA values are 
significantly higher, deviating farther from a value of 1.0, indicative 
of a breakdown in fractality. The application of stochastic resonance 
resulted in increased fractality (i.e., α moved significantly toward 1.0) 
in postural fluctuations, regardless of sensory status [16]. Furthermore, 
studies of fractality in older adults have been mixed. In two recent 
studies, fractal scaling in postural COP patterns displayed deviations 
away from α=1.0 in older adults compared to young adults, indicating 
a reduction in long-range interactions and complexity in this group 
[11,12]. Conversely, fractal scaling in a separate study was lower in 
older adults compared to young adults, but neither group was different 
from α=1 [15]. However, the difference in trial length is the most 
probable explanation for these discrepancies. The two studies that 
reported age differences entailed 20 s trials [11,12], while the study that 
did not observe fractal scaling deviation away from α=1.0 consisted of 
60 s and 30 min trials [15]. Collectively, these results suggest that fractal 
scaling is also reduced in those with MS, but empirical confirmation is 
needed. Examining the effects of postural task on fractal dynamics has 
identified some mechanisms that may lead to a breakdown in healthy 
fractality. Specifically, in addition to the altering cutaneous sensation, 
paradigms have been developed to simulate the consequences of 
reduced somatosensory information by applying constraints such as 
eyes-closed conditions [13]. When young healthy adults stand quietly 
with their eyes closed, α shifts closer to 1.0 compared to when they 
stand with their eyes open, irrespective of filtering methods (Figure 1B, 
‘Adaptive’) [13]. This phenomenon may indicate stronger interactions 
between time scales based on task demands. On the other hand, older 
adults exhibit scaling exponents that deviate from optimal (i.e., closer 
to α= ~ 1.6) when eyes are closed (Figure 1B, ‘Maladaptive’), which may 

Figure 1: The adaptive and maladaptive changes in A) Complexity and B) Fractality due to the breakdown in physiological function.
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Figure 1: The adaptive and maladaptive changes in A) Complexity and B) 
Fractality due to the breakdown in physiological function.
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reflect a compensatory mechanism by older adults to actively constrain 
available degrees of freedom to minimize point-to-point fluctuations 
[11]. To summarize, while analysis of fractal scaling during quiet 
standing provides valuable information, incorporating conditions such 
as eyes-closed conditions may also play a key role in understanding how 
these interactions across time scales change as a function of organism, 
environmental or task constraints (Figure 1).

The changes in sensorimotor function occurring at different 
spatio-temporal scales can be revealed by a combined assessment of 
complexity (through MSE) and fractality (through (DFA). For instance, 
sensorimotor degradation due to MS can be observed in complexity 
(Figure 1A). DFA results suggest a different pattern (Figure 1B), 
that is, when the postural system is challenged by removing vision, 
younger individuals exhibit an adaptable response by increasing the 
interactivity between spatio-temporal processes at different levels of 
the system (i.e., α shifts toward 1.0), while older individuals display a 
maladaptive response with decreased coupling strength between levels 
of the system (i.e., α shifts away from 1.0). It is this scale- invariant 
similarity in the presence of reduced complexity that may identify 
functional adaptations in the face of physiological impairment. The 
combination of MSE and DFA appears to be a suitable way to evaluate 
how the breakdown of sensorimotor function in MS relates to adaptive 
and maladaptive changes in postural COP fluctuations. Here we 
present a conceptual framework of the evolution of changes to the COP 
signal with the onset and progression of disease (Figure 1). With the 
onset of systemic constraint (imposed by disease and/or task), MSE 
complexity decreases, while fractality initially display shifts towards 
α=1.0, representing a strengthening of interactivity as an adaptation 
to lost complexity. Further degradation results in a breakdown in the 
scale invariant COP fluctuations, manifesting as α shifting away from 
1.0. This breakdown in fractality coincides with substantial reductions 
in complexity observed with advanced aging and disease states. The 
reductions in complexity and fractality are indicative of maladapted 
physiological states. More work is needed to identify if these proposed 
changes in COP dynamics accompany neurological disease (e.g. MS, 
Parkinson’s disease, Huntington’s disease, etc.) progression and if they 
can be used to track such progression.

Conclusion
Nonlinear analysis techniques such as MSE and DFA are well suited 

to assess the changes in postural control processes due to aging and 
disease. A major asset of these methods is that they can reveal the changes 
in postural control across and within different spatio- temporal scales 
impacting different populations such as MS. Several methodological 
considerations for experimental design and interpretations need to 
be taken into account in the application of these methods. Finally, we 
propose a conceptual framework that uses both complexity (MSE) and 
fractality (DFA) analysis that may enhance our ability to track different 
stages of MS or other neurological disease progression and frailty due 
to aging and disease in general.
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