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Introduction
Neural plasticity, also known as brain plasticity, cortical plasticity 

and other terms, refers to the structural and functional reorganization 
ability of brain and nervous system as a result of input from the 
environment. It was formerly thought to exist only in early postnatal 
periods [1]. However, recent researches have shown enough evidences 
of modulating the neural plasticity in adult human subjects. A classic 
well-known experiment of modulating neural plasticity in adult 
human subject was performed by Classen et al. [2]. In their research, 
transcranial magnetic stimulation (TMS) is applied over the subjects’ 
motor cortex to elicit directional thumb movement. After the preferred 
direction of thumb movement is established, subjects are asked to 
repetitively move their thumb to the opposite direction for a period 
of 30 minutes. Once the motor training is done, TMS is applied to the 
same area of the motor cortex again. At this point, it is observed that the 
direction of subjects’ thumb movement elicited by TMS change to the 
trained direction which is opposite to the original thumb movement 
direction. This experiment shows that active motor training induces 
rapid change in cortical representation of the thumb. Therefore it is 
considered as a supportive evidence of the assumption that neural 
plasticity of adult human subject can be modulated by appropriately 
designed motor task. Neural plasticity is believed to play an important 
role in the process of motor learning, skill acquisition [3] and memory 
formation. Tremendous researches have concluded that modulation of 
neural plasticity can assist the function restoration from brain lesion 
and spinal cord injury and may facilitate the recovery of patients 
suffering from stroke, depression, and Parkinson disease. Neural 
plasticity modulation may be influenced by many factors including 
age, pharmacology, motor training, sensory input, non-invasive brain 
stimulation and gene expression. In this article, these factors are 
discussed separately in following sections. 

Age 

Neural plasticity may reduce with advancing age. Rogasch et al. 
[4] examined changes in corticomotor excitability and plasticity after 
a thumb abduction training task in 14 young (18-24 yr) and 14 old 
(61-82 yr) adults. The training task consisted of 300 ballistic abductions 
of the right thumb to maximize peak thumb abduction acceleration 
(TAAcc). TMS of the left primary motor cortex was used to access 
changes in abductor pollicis brevis (APB) and abductor digiti minimi 
(ADM) muscles motor evoked potentials (MEPs) and short-interval 

intracortical inhibition (SCSI). After motor training, 77% and 24% 
improvement in peak TAAcc were observed in young and old group 
respectively. Meanwhile, the APB MEP amplitude increased 50% in 
young subjects, while no changes were found in old subjects. These 
experiment results suggest that neural plasticity diminishes in older 
adults. Todd et al. [5] also examined the age effect to neural plasticity 
by applying inhibitory repetitive transcranial magnetic stimulation to 
young (25±4 yr) and old (67±5 yr) groups. Their experiment results 
indicate that the MEP amplitude recorded from first dorsal interoseus 
(FDI) muscle after 10 minutes of rTMS reduced 15% in the young group, 
with no changes in old group. It is supportive to the hypothesis that 
age is accompanied by reduced neural plasticity. Possible causes of the 
neural plasticity decreasing in older people may include the reduction 
in the number of synapses [6], the size of compound excitatory post-
synaptic potentials [7], the number of cells (Henderson, Tomlinson 
et al. 1980), the volume of gray matter [8] and atrophy of spinal 
motoneurones [9]. Several researches have confirmed that advancing 
age is associated with neural plasticity diminishing. However, Cirillo 
et al. [10] recently published a paper arguing that although an age-
related decline in motor learning occurred for the dominant hand, 
use-dependent corticomotor plasticity was not altered with advancing 
age in a simple thumb-training task. The mechanism of this age-related 
maintenance in neural plasticity remains to be determined. 

Pharmacological modulation 

Pharmacological modulation has been utilized to improve recovery 
of motor function. As early as in 1981, Feeney et al. [11] reported that 
a single dose of d-amphetamine (AMPH) given the day following a 
unilateral sensorimotor cortex ablation resulted in improved motor 
recovery in rats. This initial study introduced the positive effect of 
d-amphetamine to the recovery of motor function and triggered 
tremendous further researches on humans [12-15]. Butefisch et al. [16] 
investigated six subjects’ performance of a simple motor task under 
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the effects of placebo and AMPH in a randomized, double-blind, 
counterbalanced experiment. The results suggest that AMPH induces 
increased magnitude, faster development and longer lasting duration 
of use-dependent plasticity and confirm the hypothesis that AMPH 
has facilitatory effect on neural plasticity. The mechanisms underlying 
the effect of AMPH are not completely understood, but they may 
include AMPH induced presynaptic release of the monoamines 
norepinephrine, dopamine and serotonin, inhibition of their reuptake 
[17-20], and enhancement of alpha adrenergic neurotransmission 
secondary to amphetamine-dependent release of norepinephrine 
[21]. It is also reported by Sawaki et al. that drugs that antagonize the 
effects of norepinephrine, such as prazosin, decreased the effectiveness 
of motor training in eliciting use-dependent plasticity measured by 
TMS [22]. Although AMPH may bring transient side effect including 
irritability, increased alertness, and a feeling of being detached from 
the environment [16], it is conceivable that d-amphetamine enhances 
the neural plasticity thought to contribute to functional recovery after 
brain injury and cortical lesions [11,23].

Motor training 

Motor training has been proved capable of modulating neural 
plasticity [2,24]. Although the within-session effect of motor training is 
still controversial [25-27], consistency has been reported in the slowly 
developing increase of activation [27-29]. The plasticity modulation 
effect of motor training may also depend on the complexity of the 
motor task presented to the subjects. While many studies have 
confirmed that elementary motor training can change neural plasticity 
[30-32], researches also provided evidences that skilled motor training 
is more beneficial to the neural plasticity modulation [33,34]. Smyth et 
al. [35] analyzed the performance outcome of a wrist flexion-extension 
waveform-tracking task in two groups of 10 subjects, with one group 
was given 100% feedback (FB) and the other group was given only 50% 
FB during the task [35]. Interestingly, although no cortical excitability 
changes were observed during the acquisition, the 50% FB group 
had elevated primary motor cortex excitability at retention (24 hrs 
after motor training). This effect may due to the increased cognitive 
complexity in the 50% FB group, which additionally modulated the 
learning associated plasticity [36,37]. Motor training induced motor 
cortex excitability may reduce in skilled subjects compared to non-
skilled subjects when performing the same motor task [38-40]. This 
effect has been explained as diminished neural effort is required for 
a particular motor task with a history of intense motor training [32]. 

Sensory input modulation 

It has been reported that manipulation of sensory input has 
the ability to modulate the excitability of the primary motor 
cortex in animal model [41,42]. Further studies on human cortex 
demonstrated that rapid motor representation may incurred by 
disruption of sensory input, such as amputation, ischemic nerve 
block, or blood pressure cuff [24,43]. Kaelin-Lang, et al. [44] analyzed 
the MEPs recorded from abductor pollicis brevis (APB), first dorsal 
interosseous (FDI) and abductor digiti minimi (ADM) muscles after 
a 2-hour period of ulnar nerve electrical stimulation at the wrist and 
concluded that somatosensory stimulation elicited a focal increase on 
corticomotoneuronal excitability that outlasts the stimulation period 
and probably occurs at cortical sites. Khaslavskaia et al. [45] also 
reported increased motor cortex excitability after electrical stimulation 
measured by TMS in tibialis anterior (TA) muscle.

Non-invasive brain stimulation 

Non-invasive brain stimulation techniques have been developed 
rapidly in the past two decades as a useful and promising tool for 
neuroscientists. Transcranial direct current stimulation (tDCS) and 
repetitive transcranial magnetic stimulation (rTMS), two techniques 
that can purposefully enhance or decrease excitability in focal areas of 
the brain, allow researchers to explore the facilitate activity in specific 
cortical areas in motor learning in an attempt to improve motor 
function [46]. 

Single pulse transcranial magnetic stimulation (TMS) elicited 
MEPs have been widely used as effective measurement of neural 
plasticity. It operates by creating a pulse magnetic field, which induces 
focal current flow that activates the targeted cortical brain area [47]. 
TMS under the frequency of 0.1 Hz are considered unable to induce 
neural plasticity. However rTMS protocols including theta-burst 
stimulation (TBS) [48] have been proved as safe and noninvasive 
techniques that have the ability of neural plasticity modulation [49,50]. 
Generally, low-frequency rTMS (i.e. 1 Hz) induces inhibitory effects on 
motor cortical excitability [51] while high-frequency rTMS (5-20 Hz) 
usually increase cortical excitability [52,53]. It is believed that rTMS 
is able to interfere with the motor learning, skill acquisition, memory 
consolidation and reconsolidation process through stimulation on the 
primary motor cortex [54-62] and non-primary motor cortices [63-
68]. Different motor tasks may be more dependent on motor cortex or 
non-motor cortical areas like premotor cortex, posterior-parietal area 
and basal ganglia [69,70]. Therefore, TMS effects on behavior cannot be 
automatically conjectured from its effects on motor cortical excitability 
[71]. rTMS is also utilized as a useful tool in studies of interaction 
between hemispheres [72-74] and believed to be able to enhance the 
treatment effect in depression patients [75-78]. 

tDCS is another non-invasive procedure of cortical stimulation 
which uses weak direct current to polarize target brain area. Depending 
on the polarity of the stimulation, tDCS can be divided as anodal tDCS 
and cathodal tDCS that increase and decrease cortical excitability in 
the stimulated brain regions respectively [79]. tDCS has the ability to 
modulate neural plasticity and thereby enables the investigation of the 
causal relationships between brain activity. With several advantages 
over TMS, such as producing less artifact, low cost and great potential 
for cognitive and motor enhancement without seizure reported, tDCS 
is considered not only a complementary tool to TMS, but also a unique 
technique in current neuroscience [80]. 

Gene expression 

A recent popping up question in neural plasticity studies is whether 
plasticity in human motor cortex is in part genetically determined? 
According to de Geus et al.’s review [81], there are about 100 genes 
currently considered have influence to human brain function and 
cognition, in which brain-derived neurotrophic factor gene (BNDF) 
is believed to be the most promising way to better understand the 
multifaceted role of BDNF variants in different plasticity protocols 
[82,83]. BDNF, as a key neural signal that orchestrate synaptic plasticity 
[84], is elevated within motor cortex in response to motor training [85]. 
Kleim et al. [86] studied the relationship between cortical plasticity 
and BNDF with a val66met polymorphism by investigating the MEP 
amplitude recruitment curve (RC), cortical representational area, 
normalized map volume and center of gravity (COG) in 9 Val/Val, 11 
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Val/Met and 6 Met/Met subjects [86]. Their experiment results indicate 
that although no baseline differences were observed in corticospinal 
output or motor map area between Val and Met subjects, a brief period 
of motor training enhanced corticospinal output and increased motor 
map area in Val/Val, but not Val/Met or Met/Met subjects [86]. This 
outcome is consistent with former researches [87,88] and supports 
the hypothesis that BDNF is involved in mediating use-dependent 
plasticity of human motor cortex. Cheeran et al. [89] studied human 
cortical plasticity in subjects with BDNF polymorphism by using 
different protocols [89]. The significant differences of cortical plasticity 
changes in Val/Val subjects and Met allele carriers drove them to 
hypothesize that BDNF polymorphism and the number of alleles may 
be associated with cortical plasticity modulation. Missitzi et al. [82] 
furthered Cheeran et al. [89] research by studying paired associative 
stimulation (PAS) induced neural plasticity in monozygotic (MZ) and 
dizygotic (DZ) twins [82]. It was found that the intrapair differences 
in MEP amplitudes measured 25-30 minutes post-intervention at APB 
muscle were almost double for DZ in comparison to MZ twins. This 
result more convincingly supports the hypothesis that interindividual 
variability in excitability changes of the motor cortex may due to 
the BDNF polymorphism and implicates that genetic factors may 
contribute significantly to the interindividual variation of neural 
plasticity.

Summary 
Neural plasticity, as the reorganization ability of human or animal’s 

neural system adapting to the environment input, has been studied for 
more than three decades. In this review, we discussed the factors that 
may affect neural plasticity and the available modulation techniques that 
can be utilized to induce neural plasticity. With abundant evidences, 
age, medicine (d-amphetamine), and gene expression have been proved 
as important factors that may affect neural plasticity. Motor training 
and modulation techniques, such as sensory input, rTMS and tDCS, 
have been widely used to induce neural plasticity in humans. Despite 
of the great progresses that have been achieved in neural plasticity 
studies, there are still many blank areas need further explorations. For 
example, the mechanisms of the maintenance of neural plasticity in 
older subjects, the medicine assisted neural plasticity modulation, the 
design of skilled motor task that enhances neural plasticity modulation 
and the relationship between gene expression and variation of neural 
plasticity. Future researches should also include the clinic use of the 
neural plasticity modulation techniques and the development of more 
effective modulation protocols by combining the available techniques, 
while stay alert to the influencing factors.
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