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Introduction
Multiple sclerosis (MS) is a chronic inflammatory neurological 

disease of the central nervous system (CNS), characterized by 
demyelination, neurodegeneration and astroglial proliferation [1], 
with complex genetic factors exerting a profound influence [2]. Despite 
major advances in the current understanding of the pathogenesis of 
MS, the inflammatory cascade involved in MS remains unknown; 
although there is considerable evidence implicating the involvement of 
mitochondria in axonal and glial injury mechanisms [3,4]. 

Similarly to MS, neuromylitis optica (NMO), or Devic’s disease, 
is a demyelinating disease of the CNS characterized by optic neuritis 
(ON) and myelitis (My) [5] associated with anti-aquaporin 4 (AQP4) 
antibodies detectable in the serum [6]. Several siblings with NMO have 
been reported [7,8], raising the possibility of a genetic predisposition, 
but no pathogenic mutations have been identified in the AQP4 gene on 
chromosome 18q11.2-q12.1 [9]. 

MS and NMO have similarities with Leber hereditary optic 
neuropathy (LHON, MIM 535 000), which is the commonest cause 
of isolated blindness in young men. LHON is primarily due to 
mutations of mitochondrial DNA (mtDNA) that disrupt complex I of 
the respiratory chain [10,11]. Moreover, some patients, with mtDNA 
mutations causing LHON, develop a demyelinating disease, which is 
clinically and radiologically indistinguishable from MS [12]. 

Mitochondria are unique amongst cellular organelles for having 
their own distinct genome, separate from nuclear DNA (nDNA). 
This mtDNA, which is 16,569 base pairs in length, contains a total of 
37 genes - 2 ribosomal RNAs (rRNAs), 22 encoding transfer RNAs 
(tRNAs) and 13 encoding polypeptides. The polypeptides subunit are 
components of the respiratory chain, including complex I (NADH 
dehydrogenase-ubiquone oxidoreductase), complex III (ubiquinone-
cytochrome c oxidoreductase), complex IV (cytochrome c oxidase), 
and complex V (ATP synthetase) [13]. 

Previous studies reported that various mitochondrial mechanisms 

are involved in the pathogenesis of MS and other demyelinating disease 
of CNS [14-17]. In particular, several studies, linking mitochondrial 
genome abnormalities to oxidative damage and inflammation, strongly 
suggest that an acquired mitochondrial dysfunction may be contribute 
to neurodegeneration in MS [15,16,18]. This finding is supported by a 
decreased expression of several mitochondrial proteins and a reduced 
activity of complexes I and III detected in the MS motor cortex [4]. 
Furthermore, mitochondria is one of the prime cellular sources of 
reactive oxygen species (ROS) which play a role together with reactive 
nitric species (RNS) in the development of axonal degeneration 
[19,20]. Since the extent of ROS formation is a function of the 
oxygen consumption, higher levels of ROS are produced by neurons 
mitochondria with higher metabolic activity or by neuronal segments 
enriched in mitochondria, such as synapses. Neurons are particularly 
vulnerable to the oxidative stress induced by ROS. Furthermore, the 
overproduction of nitric oxide (NO) and its oxidative metabolites 
is one of the distinct characteristics of inflammatory CNS diseases 
including MS and EAE [21-24]. Thus, in conclusion, it is likely that 
oxidative damage in CNS inflammatory diseases may originates mainly 
from mitochondria [25]. 

Given the clinical similarities between NMO and LHON, previous 
investigators have also looked for specific mtDNA mutations in 
patients with NMO [26-30], while others have studied polymorphic 
variation of mtDNA in NMO cases [27,28,31,32]; a subtle increased 
susceptibility conferred by rare mtDNA variants could not be excluded 
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[30], although the recruitment of samples sizes large enough to show a 
statistical significant association between specific mtDNA variants and 
complex diseases may be extremely challenging [33]. 

Despite results previously described, the exact role of mtDNA and 
especially mtDNA’s polymorphism in MS and NMO has not been fully 
characterized. 

In our study we aimed at determining a possible correlation 
between mtDNA specific patterns and demyelinating diseases 
involving medulla and optic nerve. Particularly, we have sequenced 
and analyzed the whole mtDNA of a cohort of patients with relapsing-
remitting (RR) MS, NMO, My and ON in order to determinate a 
putative panel of deleterious mutations with a possible correlation with 
neurodegenerative diseases and establish their penetrance and their 
actual weight in the pathogenesis.

Methods
Population

The present explorative study included a total of 27 Caucasian 
individuals, 20 of which were patients (13 were diagnoses with RRMS, 
4 with NMO, 2 with ON and 1 with My,) and 7 were healthy controls 
(HC). NMO and MS patients satisfied Wingerchuk [5] and Poser [34] 
diagnostic criteria, respectively. All subjects gave the informed consent. 

Specimen collection and genetic analysis 

Blood samples were collected into CPT sterile tubes (BD) and were 
a centrifuged at 3,000 rpm for 10 minutes at 4°C for peripheral blood 
mononuclear cell (PBMC) isolation according the manual. Genomic 
DNA was extracted from PBMC using the DNeasy blood and tissue 
DNA extraction kit (Qiagen) according to manufacturer’s instructions. 
Extracted Genomic DNA was then diluted to 30 ng/μl, aliquoted and 
stored at -20°C.

The full coverage of mtDNA were amplified using mitoSEQr™ 
Resequencing Primers Set (RSS000056015_01 mitoALL™, Life 
Technologies), a system specifically designed and optimized for the 
amplification of 100% of human mitochondrial genome. This primer 
set consists 46  primers pairs  designed in order to standardize  the 
Polymerase Chain Reaction (PCR)  conditions  and the following 
sequence reaction.  Each pre-designed primer pair generates a 
resequencing amplicon (RSA) marked with a M13 nucleotide sequence 
at both 5’ ends, useful for simplifying the development of a sequence 
reaction. Through M13 primers the sequencing reaction can be set up 
using a single mastermix aliquoted into each well.

The PCR reaction included AmpliTaq Gold® 2x Master Mix, 
primers set (forward+reverse) and 30 ng of the DNA sample in 20 μl 
of total volume. Each amplicon was amplified in a single well of a 96-
well plate for each sample; each plate also included negative controls 
to ensure no possible contamination. Thermalcycler conditions were 
set  up according to the manufacturer specifications. 2% agarose gel 
electrophoresis was performed to test PCR products, and then the PCR 
was cleaned up from unused primers and dNTPs with the enzymatic 
method ExoSAP-IT® (Affymetrix) according to the manufacturer’s 
instructions.

All amplicons were sequenced using universal conditions. BigDye® 
Terminator v3.1 Cycle Sequencing kit was used for the sequence 
reaction: in a total volume of 10 μl, sequencing was performed with 
BigDye® Terminator Mix, purified PCR amplicons and M13 primer 
forward (or reverse when forward primer did not produced a readable 

sequence). Unincorporated dye terminators were removed with DyeEx® 
96 (QIAGEN) plate according to manufacturer’s instructions.

Sequence reactions were analyzed on the 48-Capillary 3130xl 
Genetic Analyzer (Life technologies). AB1 files with sequencing info 
for each sample were extracted at the end of each run.

Data analysis

Using the software  Sequencer 4.10.1 (http://genecodes.com) to 
analyse wild type sequences from mitochondrial genome obtained 
from healthy samples, we defined  a reference wild type sequence to 
be compared to the samples in order to identify variants potentially 
associated with the diseases.

Einsencluster and Treeview (http://rana.lbl.gov/EisenSoftware.
htm) softwares were used to generate heatmaps representing clusters 
of differential genetic profiles. Characterization of known variants 
(the one for which an rs number was available) was performed using 
an online software Pupasuite (http://pupasuite.bioinfo.cipf.es/), an 
interactive web-based SNP analysis tool that allows for the selection 
of relevant SNPs within a gene, based on different characteristics of 
the SNP itself; the algorithm helped in identifying putative variants for 
which a previous association with specific disease had been described.

The variants identified by comparing the reference sequence with 
each sample  was searched against gene  variants information 
databases  available online: GeneCards (http://www.genecards.org), 
Ensembl (http://www.ensembl.org), COSMIC (http://www.sanger.
ac.uk/genetics/CGP/cosmic), LOVD (http://www.lovd.nl/2.0) UniProt 

(http://www.uniprot.org) and HGMD (http://www.hgmd.org).

Results 
Variants analysis

Mitochondrial genome Sequencing of 27 samples (13 RRMS, 4 
NMO, 2 ON, 1 My and 7 HC) highlighted the presence of total 414 
variants present only in patients. Among them 74 were already classified 
in literature (and therefore registered with rs number) and 340 were 
not previously described. Out of 414 variants, 121 were missense 
(generating an amino-acid exchange), 108 synonymous (variants 
occurring in coding region but not generating amino-acid exchange) 
and 185 intronic (occurred in non-coding regions of DNA sequence) 
variants. None of the variants described so far ever occurred in a HC 
patient (data not shown). The variants distribution in our cohort of 
patients is represented in Figure 1.

Variants not previously described

Out of 340 not previously described variants, we found 6 missense 
mutations generating stop codon and consequently a truncated 
protein with compromised function. These mutations were found in 
patients with RRMS, ON and My. All truncating mutations occurred 
in heteroplasmic condition except one. The features of these mutations 
are described in Table 1.

Variants previously described

Out of 74 variants already classified in literature we found 9 variants 
reported to have a clinical impact; none of these variants were present 
in the HC group (data not shown) analysed in the present study. The 
features of these variants are summarized in Table 2. 

Mitochondrial haplogroup typing 

Haplogroup for each individual of our cohort was established 
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based on genetic data obtained according to the European haplogroup 
characterization [35]. The percentages of each haplogroup for disease 
types are reported in Table 3.

Discussion
This study is focused on detecting mitochondrial genetic profiles 

specifically associated with pathological phenotypes of demyelinating 
diseases. Compared to previous studies [30] our strategy unconditionally 
assessed the whole 16 Kbs of mitochondrial genome; this intensive 
analysis of our cohorts allowed us to search for genetic variants with 
a possible biological/clinical impact, present not only in coding genes, 
but also in non coding, regulatory regions where, as emerging evidence 
has been reported, variants affecting biological processes may occurs.

In order to cut off clinically irrelevant variants, we defined a specific 
reference sequence obtained from 7 HC’ samples; this approach allowed 

us to highlight variants potentially linked to the onset of NMO, ON, My 
and RRMS in our cohort. We detected several unidentified variants, 
few of which may likely have a clinical impact due to their capacity 
to prematurely stop the translation of proteins with critical functions 
in the OXPHOS chain. Moreover, we identified several previously 
associated demyelinating pathologies described variants, strengthening 
the hypothesis of a direct correlation between variant occurrence and 
biological/clinical susceptibility to the disease development. 

Unknown variants

Six not previously described nonsense mutations have been found 
in our study; 5 of them were in heteroplasmic conditions, while one 
occurred in homoplasmic condition in the sequence coding for 
cytochrome b (Leu238Stop). Nonsense mutations are genetic variants 
resulting in a shorter, unfinished protein product. These “truncating” 
mutations occur when a stop codon substitutes the proper amino acid 

Figure 1: Variants distribution in different disease groups. NMO: neuromylitis optica, ON: optic neuritis, My: myelitis, RRMS: relapsing-remitting multiple sclerosis.

NMO ON My RRMS

nt change aa change Protein 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4989 C>T Gln Stop ND2 +/- +/-

5932 C>G Thr 10 Stop CYT1 +/- +/-

6893 C>G Ser 329 Stop CYT1 +/- +/-

6901 A>G Lys 332 Stop CYT1 +/-

8528 T>G Met 1 Stop ATP6 +/-

15462 T>A Leu Stop CYT-b      +/+               

Table 1: Features of Nonsense Mutation Identified in the Study not Previously Described in Literature. +/- occurrence of mutation in heteroplasmic conditions while +/+ 
in homoplasmic. NMO: neuromyelitis optica, RRMS: relapsing-remitting multiple sclerosis, ON: optic neuritis, My:myelitis. ND2: NADH dehydrogenase subunit 2, CYT1: 
cytochrome c oxidase subunit I, ATP6: ATP synthase F0 subunit 6, CYT-b: cytochrome b.
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due to a nucleotide exchange. Several pathological conditions including 
myopathies, exercise intolerance, encephalomyopathies, lactic acidosis, 
and strokelike episodes have been described to be associated with 
mutations occurring in cytochrome b [36-38]. In particular, among 
these pathologies, exercise intolerance is a multisystem disorder 
that involves different syndromes including LHON; interestingly, 
the nonsense mutation, Leu238Stop mutation, occurred in a patient 
diagnosed with ON, shortening the protein by 142 amino-acids 
(cutting about 37% of the protein off). Unfortunately, no other clinical 
or biological features of the sample are available, supporting the 
hypothesis of a direct correlation between mutation occurrence and 
disease development. However, it is likely that the deletion of more 
than 1/3 of cytochrome 3 may deeply compromise Complex 3 and 
other functions of oxidative phosphorylation. As previously described, 
in fact, mutations within the mitochondrially encoded human 
cytochrome b gene (MTCYB) may lead to combined enzyme complex 
defects involving both complexes I and III. The absence of assembled 
complex III may results in a dramatic loss of complex I leading to 
specific clinical conditions including exercise intolerance [39].

All of the nonsense mutations except one (8528 T>C) occurred in 
two patients: one diagnosed with ON and the other with My. These 
mutations, detected in protein-coding for the genes ND1 (Gln173Stop), 
MT-CYT1 (Thr10Stop, Ser329Stop, Lys332Stop) and MT-CYTB 
(Leu238Stop) have an unknown clinical and biological impact; however, 
their capacity to prematurely stop the protein synthesis, leading to an 
incomplete protein synthesis and their concomitant occurrence in 
the same mitochondrial genome, synergistically contributing to the 
disruptive event, suggesting a possible role in the pathogenesis of 
diseases with overlapping features (i.e. ON, My). 

Variants previously described

Online databases mentioned in the data analysis paragraph, 
allowed us to compare our findings with previously described genetic 

profiles. Nine of the detected variants had been previously described 
as able to increase the risk of CNS disease. In particular: rs1599988 
missense variant, found in 2 of our patients, 1 with NMO and 1 with 
RRMS, was previously described in NMO [32] and in about 40% of 
the mtDNAs of European LHON patients [40,41, http://omim.org/
entry/516000#0003]. Several other mutations in protein coding 
for gene ND1 have been found in LHON [13,40], multisystem 
atrophy, Leigh syndrome, Parkinson disease and various forms of 
encephalopathy [42], supporting the hypothesis that this gene is related 
to optic nerve pathologies and myelin abnormalities. Rs28358270 
synonymous variant was identified in a ON patient. The nucleotide 
change from G to A occurred in the binding site for FOXC1 (forkhead 
box C1) transcription factor. FOXC1 showed DNA binding specificity 
through a selection of high affinity binding sites. Inactivation of this 
protein was reported [43] to be associated with demyelination of the 
cerebral white matter (WM), and may therefore be involved in the 
occurrence of neurodegenerative processes. Mutation in ATPase6 
gene has been observed in another condition involving CNS and 
optic nerve such as NARP (neuropathy, ataxia, retinitis, pigmentosa) 
[13]. The synonymous variant rs28575684 was expressed in 2 of our 
patients, 1 with ON and 1 with My. This site was predicted (through the 
pupasuite online tool described before) to interact with specific micro-
RNA: miRNA-27b. Micro-RNAs, are post-transcriptional regulators 
of gene expression, contributing to pathogenic T-cell differentiation in 
MS; miR-27b were increased in naïve memory CD4(+) T cells from 
patients with MS, inhibiting Th2 cell development and favouring 
pro-inflammatory Th1 responses [44]. Synonymous rs2854122 and 
missense rs3094280 variants were found in 1 NMO patient and 
1 RRMS patient. These variants occurred in a binding site for ETS1 
transcription factor. A study in a mouse model of MS reported that 
ETS1 might play a central role in the inflammation and demyelination 
processes [45]. The missense mutation (changing an Alanine into 
a Threonine) rs28359178 was detected in 1 NMO patient and in 2 
RRMS patients. This variant, better known as 13708A, was associated 

NMO ON My RRMS

Variant ID nt change aa change Type Interaction 
domain

Associated 
disease 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

rs1599988 4216 T>C Tyr304His mis - NMO, LHON +/+ +/+
rs28357980 4917 A>G Asn150Asp mis - NMO, LHON +/+ +/+
rs3021088 5460 G>A - syn - AD,PD +/- +/-
rs28358270 9123 G>A - syn TFBS (FOXC1) DM CNS +/+
rs28575684 9647 T>A - syn miRNA MS +/- +/-
rs2854122 12705 C>T - syn TFBS (ETS1) MS, DM +/+

rs28359178 13708 G>A Ala>Thr mis - MS, LHON, 
AD, PD +/+ +/- +/+

rs41509754 13965 C>T - syn - MS +/+
rs41518645 15257 G>A Asp171Asn mis - LHON +/+ +/+ +/+
rs3094280 15663 A>G Ile>Val mis TFBS (ETS1) MS, DM    +/+          +/+       

Table 2: Features of Known Mitochondrial Variants Identified in the Study. +/- indicates the occurrence of mutation in heteroplasmic conditions while +/+ in homoplasmic 
conditions. RRMS: relapsing-remitting multiple sclerosis, NMO: neuromyelitis optica, ON: optic neuritis, My:myelitis, LHON: Leber’s hereditary optical neuropathy, AD: 
Alzheimer’s disease, PD: Parkinson’s disease, MS: Multiple sclerosis, DM: demyelinating disease. ND1: NADH dehydrogenase subunit 1, ND2: NADH dehydrogenase 
subunit 2, ATP6: ATP synthase F0 subunit 6, CYC: cytochrome c oxidase subunit III, ND5: NADH dehydrogenase subunit 5, CYT-b: cytochrome b; mis: missense; syn: 
synonymous.

Haplotype NMO ON My RRMS HC
J 75,00% 100,00% 100,00% 23,10% -
H 25,00% - - 46,20% 43%
T - - - 15,40% -
X - - - 15,40% 43%
K - - - - 14%

Table 3: Percentage of Haplogroup occurring in Each Diseases’ Groups and Healthy Controls. NMO: neuromylitis optica, RRMS: relapsing-remitting multiple sclerosis, ON: 
optic neuritis, My:myelitis. The number of samples for each group is indicated in parenthesis.
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in several studies with an increased risk of developing MS, LHON, 
Parkinson and Alzheimer disease [46,47]. Several other mutations in 
the protein coding gene ND5 have been found in LHON and MELAS 
(mitochondrial encephalomyopathy, lactic acidosis, strokelike episodes) 
reinforcing the belief that mutations in these genes are related to optical 
and CNS demyelinating pathologies [13,40].

Haplotypes analysis

As mentioned in previous publications, specific haplotypes 
were associated with higher risk of MS development. Interestingly, 
haplotype J only occurred in samples diagnosed with a degenerative 
disease. Unfortunately, the small sample size did not allow us to 
provide statistically significant information concerning haplogroups 
distribution. However, our preliminary analysis in line with previously 
published data [2,46]. 

In conclusion, despite the limited number of samples of our cohort 
did not allow us to give a statistical significance to our findings, the 
study highlighted new insights on the clinical impact of mitochondrial 
genome’s variants in neurodegenerative diseases; we looked not only 
for mutation with evident deleterious features, but also for variants 
that, occurring in non-coding regions, may affect the protein function 
through indirect mechanisms (such as interaction with transcription 
factor or other gene expression regulators such as miRNA). The use of 
most informative online databases allowed us to compare our results 
to previous findings and to confirm the presence of variants with a 
biological significance and likely showing a clinical impact. For some 
variants, which had not previously been identified, a possible biological 
deleterious function was provided, consistent with their occurrence in 
patients with neurodegenerative diseases.
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