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Abstract
Biomagnetism is one of important biotechnology fields for manipulation of cell lines. However, its peri-cellular 

level regulation, upon stimulation is not fully developed. Glioblastoma U87 and U251 represent a malignant model in 
rapid growing cancer. We focused in cellular level dispersion of static magnetic fields (0.2T=2000 ± 600 Gauss), using 
its fast growing properties. As a result, cytoskeletal protein nuclear Ankyrin G was dispersed. Membrane barriers in 
TEM microscopy indicated the membranous apparatus change. Our findings bring an insight that static magnetic 
stimulation creates a specified cytoplasmic intracellular pattern. 
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Introduction
Glioblastoma multiforme, is a common malignant brain tumor, 

with a 5 year survival rate of less than 5% [1-3]. It is currently treated 
with radiotherapy and chemotherapy [4-6]. The current strategies 
are effective, however, the effect of current therapies is not sufficient 
[7,8] with high rate of recurrence [9-11]. Side effects include immune-
depressant effects [12], secondary tumors [13]. Due to handicaps of 
widely applied established cures, alternative therapies are in clinical 
research such as specific maker target therapy [14-16] and supplemented 
magnetic therapy [17,18].

Static magnetic fields regulate the movements of molecules [19,20]. 
Previous literatures report effects in breast cancer [21] and showed 
changes of TUBGCP3 regulating material in the application of static 
magnetic field [22]. Ankyrin G is used for regulation of ion channels 
and formation of nuclear membrane apparatus along with spectrin [23].

Additional molecular evaluation was done on proteins associated 
in nuclear membrane formation and metastasis by assessing the 
localization of these molecules. TEM microscopy with applied 3D 
contrast image analysis was performed to confirm the molecular 
information.

Materials and Methods
Cell line

Human glioblastoma U87MG and U251MG cells (American Tissue 
Culture Collection) were cultured in DMEM, supplemented with 10% fetal 
bovine serum, 100 units/mL of penicillin and 100 μg/mL streptomycin, at 
37°C in a humidified incubator containing 5% CO2 and 95% air.

Application of magnets

Static magnetic fields (1400-2600 Gauss, about 1/5 intensity of 
MRI, measured by GM08 Gaussmeter, Hirst Magnetic instruments Ltd., 
England) exerted by permanent magnets were applied to 24-well and 96-
well by attaching magnets one the bottom of the well. The north (N) and 
south (S) poles were randomly arranged, or studied separately as there were 
controversial reports that elucidate to have differences or no effects of N 
and S poles [24,25]. The magnets were applied in bottom of the wells with 
a distance of 0.1-0.3 cm to the cells. The cells were cultured on a plastic 
shelf (75-T) 4.0 ± 0.2 cm above the metal shelf, so the metal shelf does 
not influence the magnetic field within the wells. Separate incubators were 

used for the control and treated wells so that the magnetic field would not 
affect the control. Incubation was done for 48 ± 4 h.

Immunocytochemistry

The localization of ankyrin G was measured. Before immunostaining, 
the 24-well plates were applied with either N or S pole of static magnetic 
field and labeled. For immunostaining PBS-washed cells were fixed in 
4% paraformaldehyde, permeabilized in 0.1% Triton X-100 in PBS, 
blocked in 1% bovine serum albumin in PBS and were immunostained 
with antibodies against Ankyrin G (Santa Cruz Biotechnology, 1:200 
dilution, polyclonal). The additional statistical confirmations were 
made for the differently localized proteins according to application of 
static magnetic fields.

Tunneling Electric Microscopy (TEM) imaging

TEM imaging was made for U87 and U251 before and after 
application of randomly arranged N and S pole magnets. U87 and 
U251 cells were fixed as 1 mm tissue blocks in 4% formaldehyde and 
1% glutaraldehyde in 0.1 M PB (pH 7.4) for at least 2 h to overnight. 
The sample was then immersed in 8% (0.2 M) sucrose in 0.1 M PB 3 × 
15 min. After all, the sample was post fixed in 1% osmium tetroxide in 
0.1 M PB for an hour.

To assess 3D contrast of TEM microscopy, Parameterization-
based Numerical Method for Isotropic and Anisotropic Diffusion 
Smoothing on Non-Flat Surfaces [25] was used. Using a parameterized 
representation of the surface, compute a solution to the diffusion 
equation in which metric tensors are used to account for the curvature 
of the surface and intrinsic distances.
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Figure 1: Magnet treatment and the immunocytochemistry of ankyrin-G (A:U87, B:U251). Controls seemed to have ankyrin-G configurations in circular structures 
around the nucleus, which supported the nuclear membrane (white arrows). However, we found these highly structured cells had a lower proportion of organized 
ankyrin after the application of N and S pole magnets, showing rather irregular protein distributions. The ankyrin-G staining was merged with the DAPI stain, to 
reveal the relative locus within the nucleus. 
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Migration assay

Cells were plated onto the 24-well plate to create a confluent 
monolayer and incubated the plate properly for approximately 6 h at 
37°C, allowing cells to adhere and spread on the substrate completely. 
The required number of cells for a confluent monolayer depends on 
both the particular cell type and the size of dishes and need to be 
adjusted appropriately. The cell that penetrated the monolayer, with 8 
μm in diameter, was counted. The cells were observed under a phase-
contrast microscope [26].

Statistical analysis

In immunocytochemistry, Pearson’s Chi-Square test was assessed 
to confirm the relative localization of proteins; the ratio between total 
sum of nuclear area and total sum of protein area was calculated by 

depicting a mathematical boundary in control and magnet applied 
cells. After all, null hypothesis, which states that the ratio of (magnet 
treated group): (control)=1:1 and alternative hypothesis, which states 
that the ratio of (magnet-treated group):(control) ≠ 1:1 was set to be 
confirm the Chi-Square test. For making boundary contour lines, three 
dimensional contrast visual images was made with Gaussian Kernel 
Filtering method [25] and divided by sections according to its height 
portion range from 0 to 150.

Results
Protein localization and immunocytochemistry

Ankyrin G localization was unarranged in both N or S pole magnetic 
fields, whereas the boundary was clearer in control in both U87 and 
U251 cells (Figure 1). Cells with mitotic stage had high expression of 

Figure 2: TEM microscopy and 3D contrast conversion of U87 and U251 cells. After magnet treatment (48 h, 2000 ± 600 Gauss), the nuclear membrane boundary 
shows less contrast as compared to the control group. The control's contrast is distinguishable, whereas the contrast is rather unclear in the magnet-treated group 
(A&C: 5000x and B,D: 20000x or 25000x). In addition, the subcellular organelles were highly organized and positioned in the controls (A1 arrow) but rather dispersed 
after exposure to magnetic fields (A2 arrow). In addition, nuclear boundaries became unclear upon treatment with magnets (compare N1 arrow and N2 arrow). In, 
U251 cells, with magnets applied (48 h, 2000 ± 600 Gauss), the nuclear membrane boundary shows less contrast than in the control group, which is consistent 
with the results for U87. Also, after application of the magnetic field, the nucleolus has a light image (A, Nucleoli Nu1 and Nu2 are dark shapes, whereas magnetic 
field-treated nucleolus Nu3 shows a light contrast).
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A

B

Figure 3: Cytopathic differences and envelope focus in magnetic treatment. A: We found the white-appearing cells in the groups of cells that received magnet 
treatment but not in the control group. B: For nuclear envelopes, they appear with a blue color or do not appear at all in 3D contrast conversion imaging.



Page 5 of 6

Citation: Kim SC, Im W, Kim BJ (2017) Low Intensity (0.2T) Static Magnetic Field for Dispersing Nucleus Ankyrin G in Human Cultured Glioblastoma 
Cells. J Neurol Neurophysiol 8: 429. doi:10.4172/2155-9562.1000429

Volume 8 • Issue 3 • 1000429J Neurol Neurophysiol, an open access journal
ISSN: 2155-9562

Ankyrin G, but the reason was not clarified. Confocal microscopy was 
done to confirm the changes in immunocytochemistry of fluorescence 
microscopy.

TEM microscopy by using static magnetic fields

TEM microscopy image was obtained and was analyzed by 3D 
contrast conversion. In U87 and U251 cells, with the application of 
magnets with random poles (48 hours, 2000 ± 600 Gauss), the nuclear 
membrane boundary shows less contrast compared to the control group. 
Also, the subcellular organelles were highly organized and positioned 
in control (A1 arrow, Figure 2A) but rather dispersed by the application 
of magnetic fields (A2 arrow, Figure 2B). Nuclear boundaries become 
unclear in the application of magnets (compare N1 arrow and N2 
arrow, Figure 2B). Figure 3 shows TEM microscopy and 3D contrast 
conversion. The nucleolus also showed light image with static magnetic 
fields (Nucleolus Nu1 and Nu2 show dark shape whereas magnetic field 
applied nucleolus Nu3 shows light contrast). 

The nuclear membrane structure was relatively unclear in the 
cells with static magnetic fields applied. The dielectric constant of 
water molecules are altered by static magnetic fields and phosphate 
and energy degradation process can also be interfered by alterations 
in dielectric constant of water molecules [27]. Therefore, the sole role 
of facilitating hydrolysis in phosphates by static magnetic fields in 
molecular level might have changed the envelope properties of the cell. 
Cellular process including signal transduction requires phosphate as 
energy source and signaling.

Discussion and Conclusion
Our study focused in the subcellular structure orientation and 

the regulatory effects of static magnetic fields in U87 and U251. 
Especially, Ankyrin G, which were associated with the cytoskeletal and 
proliferation properties showed cytoplasmic delocalization. Nuclear 
membrane formations were an issue in TEM microscopy.

Ankyrin G formation had circular apparatus that arranges the 
nucleus, but showed relatively random distribution by application 
of magnets. The localization was concentrated in the nucleus in the 
control group, whereas it was localized in cytoplasm by applied N 
pole static magnets (Figure 2). Ankyrin G results are related with ion 
channeling targeting of cyclic nucleotide-gated (CNG) channels to the 
rod outer segment required their interaction with ankyrin G. Ankyrin 
G localized exclusively to rod outer segments, co-immunoprecipitated 
with the CNG channel, and bound to the C-terminal domain of the 
channel beta-1 subunit. Depletion of these proteins in neonatal mouse 
retinas markedly reduced CNG channel expression [23,27]. By this 
respect, reports that calcium channels alteration by a patch clamp study 
[28] and its role of facilitating hydrolysis of nucleotide phosphates 
in phosphates in the application of static magnetic fields might have 
association with the envelope properties of molecular levels in the cell.

For an enzyme to perform such mechanisms as phosphatase and 
hydrolysis activity of phosophodiester bonds, the activation energy barrier, 
which is dependent in dielectric constant of water molecules, is a major 
factor that regulates the speed of reaction [29,30]. However, the dielectric 
constant of water molecules is altered by static magnetic fields [27].

There are some reports that cytoskeletons and subcellular structures 
are altered by static magnetic fields [18,22]. It reveals that cytoskeleton 
and Gamma Complex Protein3 structure is altered and this correlates 
with our data that proliferation might be delayed by these reasons. Some 
studies report that calcium channels can be altered by static magnetic 

field in a patch clamp study [28]. Following with these studies, Notable 
structural changes were observed in TEM microscopy when static 
magnetic fields were applied.

Cell mobility is related on adhesion molecules in cellular membrane 
surface, and these complex adhesion molecules have a role in invasion 
[31], which is linked to multiple signaling pathways below the plasma 
membrane [32]. There is a link with nuclear membrane lightening via 
ankyrin G localization. As the nuclear membrane apparatus is dispersed 
or disorganized due to complex mechanism of magnetic field, nuclear 
proteins might be delocalized to cytoplasm by this manner. These 
results together indicate that the magnetic field may make physical 
changes in terms of energy and molecular status alterations, which links 
to specific chemical changes of certain proteins.
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