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Abstract
Objective: To explore the gut-brain axis by examining gut hormone levels and cognitive test scores in women with 

(HIV+) and without (HIV-) HIV infection. 

Design/methods: Participants included 356 women (248 HIV+, 108 at risk HIV-) in the Brooklyn Women’s 
Interagency HIV Study (WIHS) with measured levels of ghrelin, amylin and gastric inhibitory peptide (GIP), also 
known as glucose-dependent insulinotropic polypeptide. Cross-sectional analyses using linear regression models 
estimated the relationship between gut hormones and Trails A, Trails B, Stroop interference time, Stroop word recall, 
Stroop color naming and reading, and Symbol Digit Modalities Test (SDMT) with consideration for age, HIV infection 
status, Wide Range Achievement Test score (WRAT), CD4 count, insulin resistance, drug use, and race/ethnicity. 

Results:  Among women at mid-life with chronic (at least 10 years) HIV infection or among those at risk, ghrelin, 
amylin and GIP were differentially related to cognitive test performance by cognitive domain. Better performance 
on cognitive tests was generally associated with higher ghrelin, amylin and GIP levels. However, the strength of 
association varied, as did significance level by HIV status.

Conclusion: Previous analyses in WIHS participants have suggested that higher BMI, waist, and WHR are associated 
with better cognitive function among women at mid-life with HIV infection. This study indicates that higher gut hormone 
levels are also associated with better cognition. Gut hormones may provide additional mechanistic insights regarding the 
association between obesity and Type 2 diabetes and cognition in middle-aged HIV+ and at risk HIV- women. In addition, 
measuring these hormones longitudinally would add to the understanding of mechanisms of actions of these hormones and 
their use as potential clinical tools for early identification and intervention on cognitive decline in this vulnerable population. 

Keywords: Cognition; Ghrelin; Amylin; Gastric Inhibitory Peptide
(GIP); HIV; Women; Overweight; Obesity; Middle-aged
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Symbol Digit Modalities Test; SBP: Systolic Blood Pressure; T2D: Type 2 
Diabetes; WC: Waist Circumference; WHR: Waist-to-Hip Ratio; WRAT: 
Wide Range Achievement Test; WIHS: Women’s Interagency HIV Study; 
5-PL: 5-Parameter Logistic; MI: Myocardial Infarction

Introduction
Survival with Human Immunodeficiency Virus (HIV) infection has 

been extended because of antiretroviral therapies (ART). Thus, HIV 
infection is becoming a chronic infection of aging, along with other 
aging-related conditions, such as Type 2 diabetes (T2D), cardiovascular 
diseases, and cognitive impairments. In many countries, the advent 
of ART has been accompanied by an increase in body mass index 
(BMI) that mirrors trends in the general population. Thus individuals 
with HIV infection are becoming more overweight and obese, which 

increases their risk for developing the aforementioned leading causes 
of disability and death in the United States and around the world, 
particularly of interest here, cognitive impairments [1-3].

The gut brain axis has been extensively implicated in human health. 
Hormones secreted by the gut have been shown to interact with the 
brain and regulate feeding behavior and energy balance [4]. Food intake 
behavior and energy homeostasis are strongly regulated by a complex 
system of humoral factors and neural structures constituting the gut-
brain axis. To date, the only known peripherally produced and centrally 
acting peptide that stimulates food intake (orexigenic) is ghrelin, which 
is mainly synthesized in the stomach. 
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Ghrelin, discovered by Japanese researchers in 1999, is an orexigenic 
polypeptide (i.e., it stimulates the appetite and increases dietary intake), 
composed of 28 amino acids, and is secreted mainly by the P/DI cells lining 
the stomach fundus and, to a lesser degree, by various organs: intestine, 
pancreas, kidney, hypothalamus, and pituitary gland [5,6]. Ghrelin 
secretion increases under fasting conditions and falls after food intake. After 
gastrectomy, the concentration of ghrelin in plasma falls approximately 
75%, which shows the importance of its secretion by the stomach [7,8].

Ghrelin may interact with leptin, which induces satiety at high levels, 
to regulate energy balance. Ghrelin is an example of the neurochemical 
overlap between reward and energy balance regulation systems, and 
the reward systems have been implicated in addictive behaviors such as 
compulsive overeating and drug dependence [9,10]. Ghrelin also appears 
to activate the cholinergic-dopaminergic reward link, which is associated 
with reward and motivated behavior, such as food searching. In the brain, 
ghrelin is produced by the arcuate nucleus and stimulates secretion of 
HGH from the anterior pituitary [7]. Ghrelin also acts on the level of the 
hypothalamus by stimulating biosynthesis and secretion of neuropeptide 
Y and Agouti-Related Protein [5,11]. Polymorphisms in the pro-ghrelin 
gene have been associated with obesity [10] and methamphetamine 
dependence, while polymorphisms in the ghrelin receptor gene have 
been associated with bulimia [12] and obesity [7,10,12,13].

Amylin, a 37 amino acid peptide, is co-secreted with insulin by 
pancreatic beta cells, either in response to glucose or sulfonylureas 
stimulation [14]. This is in contrast to ghrelin secretion, described 
above. Amylin, which is deficient in those with T2D, inhibits glucagon 
secretion, delays gastric emptying, and promotes satiety, thereby 
decreasing postprandial blood glucose [15-17]. Plasma amylin is 
positively associated with cognitive function [18-20]. Amylin treatment 
improves memory in AD mouse models [19]. However, amylin's 
activities in cognition are impaired in the presence of T2D [20].

Gastric Inhibitory Peptide (GIP), also referred to as Glucose-
dependent insulinotropic peptide, is an incretin, an intestinal peptide 
secreted by the gut in response to dietary intake of glucose, lipids and 
carbohydrates [21]. Incretins have been suggested to be a key link to 
obesity and physiological responses to today’s obesigenic environments. 
In fact, analogues of GIP have been developed to treat T2D. Some of these 
analogues cross the blood-brain barrier, are neuroprotective, activate the 
brain’s neuronal stem cells, and improve cognition. Receptors for GIP are 
expressed in neurons, and GIP is expressed and released as a transmitter 
by neurons [22]. GIP analogues such as DAla(2)GIP, enhance synaptic 
plasticity in the brain and reverse the beta amyloid induced impairment 
of synaptic plasticity in Alzheimer mouse models [23].

Today, according to PubMed, there are no published reports on the 
association between GIP and cognition or dementia in adults infected 
or not with HIV. Studies in mice are equivocal [24,25], however studies 
of GIP receptor knockout mice show impaired cognition [26-28]. 
In contrast, activation of GIP agonists has been shown to improve 
cognition in mouse models [29].

In the present study, we investigated whether levels of three gut 
hormones are differentially associated with cognitive performance in 
middle-aged women who are HIV+ vs HIV- and participate in the 
Women’s Interagency HIV Study (WIHS) [21,22]. Previous analyses in this 
same group of women have shown that higher levels of BMI and lower 
levels of blood leptin are associated with better cognitive function [30,31].

Materials and Methods
The WIHS is an ongoing prospective study of HIV infection in 

women [32]. WIHS began in 1994 and enrolled 3766 women across 
six sites in San Francisco, Los Angeles, Chicago, Washington, DC, 
Brooklyn and the Bronx (New York). Across all sites, WIHS initially 
recruited 2054 HIV infected (HIV+) and 569 at-risk HIV uninfected 
(HIV-) women in 1994-1995 and an additional 737 HIV-infected 
and 406-HIV uninfected women in 2001-2002. The Brooklyn WIHS 
site has participated since the WIHS’ inception. Among the Brooklyn 
participants 356 (247 HIV+, 107 HIV-) had available cognitive tests and 
gut hormone measures. Written informed consent was provided by all 
Brooklyn WIHS participants via a human subject’s protocol that was 
approved by the SUNY Downstate Medical Center Institutional Review 
Board (protocol # 266921).

Demographic measures

All demographic measures were self-reported. Race [32,33] was self-
reported as white, Hispanic, African-American (AA), or ‘other’ (e.g., 
Native American/Alaskan, Asian/Pacific Islander) for all participants. 
Participants are also asked to report the current socioeconomic status, 
educational levels attained, smoking status, and use of marijuana, 
‘crack’, cocaine, and heroin.

Clinical measures

Anthropometric measures were conducted according to the 
NHANES III protocol, wearing light clothing, and included body weight 
(pounds), body height (inches), waist and hip circumferences (cm), and 
BMI (kg/m2) [23]. Body weight was recorded to the nearest 1.0 pound, 
and body height was measured to the nearest 1.0 inch. After conversion 
of body weight and height to metric units, BMI was calculated as 
kilograms per meter squared (kg/m2). Categories of BMI included ≥ 25 
kg/m2 for overweight and obesity and ≥ 30 kg/m2 for obesity [34]. Waist 
and hip circumferences were measured to the nearest 0.5 cm. WHR was 
calculated as the ratio of waist to hip circumference. Central obesity 
was defined as WHR >0.80 or WC ≥ 88 cm [35].

Eight hour fasted blood samples were collected and total cholesterol 
levels were determined as previously described [26]. Systolic (SBP) and 
diastolic blood pressures (DBP) were recorded using a standardized 
protocol [36]. Hypertension was defined as either average measured 
SBP>140 mm Hg or DBP >90 mm Hg, self-reported hypertension, or 
use of antihypertensive medications. Previous myocardial infarction 
(MI) and T2D were self-reported [32,33].

Biomarker analysis

Plasma samples, standards and controls were tested in duplicate 
using an active ghrelin ELISA, and active amylin and gastric 
inhibitory polypeptide (GIP) were measured by Luminex multiplex 
assay (Millipore, Billerica, MA). For active ghrelin, samples were 
tested undiluted and plates were prepared according to protocol and 
quantified using a 6-point standard curve ranging from 172 to 5500 
ng/mL. Plates were read using a Molecular Devices Plate reader and 
Softmax Pro data analysis software. A 5-PL curve fit was used. Data 
analysis was performed using Softmax Pro 5.0. For amylin and GIP, 
samples, standards and controls were tested in duplicate and the assay 
was prepared according to protocol using a 7 point standard curve. 
Plates were read using the Bioplex 200 with Bioplex Manager (BioRad, 
Hercules, CA). 

HIV-related variables

Methods for determining HIV status, AIDS diagnosis, CD4 count, 
viral load, and duration of ART use were described previously [32,33].
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Cognitive tests

Cognitive tests (Trails A, Trails B, Stroop interference time, Stroop 
word recall, Stroop color naming and reading, Symbol Digit Modalities 
Test (SDMT) and the Wide Range Achievement Test (WRAT) were 
administered to all English-speaking WIHS participants during visits 21 to 
24 (October 2004 to September 2006) as part of the WIHS core assessment; 
the Comalli-Kaplan Stroop was administered to a subgroup during visits 
25-28, October 2006 to September 2008 (Table 1). These tests have been 
previously described [41]. Among participants who completed testing 
on multiple visits, and therefore have more than one score, only the first 
score was used. Times greater than 240 s were coded as 240 s, errors were 
recorded, but were not used to adjust interference times. For all cognitive 
tests, we used raw scores rather than normalized data.

Inclusion criteria

We include all data collected by visit 28 among all Brooklyn WIHS 
participants, concluding in September 2008 for 356 participants (247 
HIV+, 107 HIV-) with data available on both anthropometric and 
cognitive measures. 

Statistical analysis

Gut hormones were considered as continuous variables, except 
for ghrelin. Ghrelin was considered in quintiles due to measurement 
limits of the assay and one-fifth of samples in the lowest quintile 
having the same value. Linear regression analyses were used to 
examine associations between continuous or categorical gut hormones 
and cognitive test scores (time to completion) of Trails A, Trails B, 
SDMT score, Stroop interference, Stroop Color Naming, and Stroop 
Word Recall. Regression models were run separately for infected and 
uninfected women.

Several covariates were considered including: age, race, highest 
educational level attained, Wide Range Achievement Test (WRAT) 
score, HIV status, ART, CD4 count, CD4 nadir, prevalent DM, SBP, 
DBP, use of anti-hypertensive medications, use of exogenous insulin, 
blood cholesterol level, current smoking status, and use of marijuana, 
‘crack’, cocaine, and/or heroin. Potential covariates were included 
if significant in age-adjusted models at a level of p<0.05. Given this 
significance level, final models included the following covariates: age, 
WRAT, race, exogenous insulin, use of antiretroviral therapy (ART) and 
any recreational drug use. Other HIV-related covariates evaluated, such 
as CD4 count or CD4 nadir, were not included because they were not 
associated with cognition or the gut hormones. In analyses of women 
who were HIV+, we also adjusted for HIV viral load. In sensitivity 
analyses of both HIV+ and HIV- women, we excluded drug users. 
STATA 12 was used for all statistical analyses. Results were considered 
statistically significant at p<0.05. 

Results 
Both gut hormone and cognitive measures were available for 

356 Brooklyn WIHS participants (213 HIV+ and 97 HIV- women). 
Demographic, anthropometric, and health characteristics are 
presented in Table 2. Based on average age (mean age 38.9 years), 

Cognitive Domain Test

Executive Function
 

Trails A, Trails B
Stroop Interference [37,38]

Speed of Information Processing 
Symbol Digit Modalities Test (SDMT)* [39,40]

Stroop Color Naming and Reading
Learning and Memory Stroop Word Recall

[*The SDMT score is the number of correct items in 90 s, all other test scores are 
times with lesser time indicating better performance]

Table 1: Cognitive tests administered in the WIHS and corresponding cognitive 
domains measured [41,42].

  ALL (n=356) HIV+ (n=248) HIV- (n=108)  
Characteristic N Mean (SD)/n (%) N Mean (SD)/n (%) N Mean (SD)/n (%) p-value
Age 356 38.9 (9.1) 248 40.0 (8.5) 108 36.5 (9.9) <0.001
Race 356   248   108   0.46
White   31 (8.7%)   24 (9.7%)   7 (6.5%)  
African American (AA)   282 (79.1%)   194 (78.2%)   88 (81.5%)  
Non-white, non-AA Hispanic   34 (9.6%)   23 (9.3%)   11 (10.2%)  
Other   9 (2.6%)   7 (2.8%)   2 (1.8%)  
Highest education 355   1194   491   0.571
Grades 7-11   126 (35.5%)   428 (35.9%)   158 (32.2%)  
Completed HS   127 (35.8%)   377 (31.6%)   162 (33.0%)  
Some college   86 (24.2%)   305 (25.5%)   131 (26.7%)  
4 years degree   14 (3.9%)   62 (5.2%)   32 (6.5%)  
attend/complete grad school   2 (0.6%)   22 (1.8%)   8 (1.6%)  
CD4 count     245 27,537 (140,597)      
Viral load     246 518.5 (322.7)      
GIP (pg/ml) 355 69.1 (87.4) 248 69.4 (82.5) 107 68.4 (98.3) 0.919
Ghrelin (pg/ml) 356 365.5 (223.6) 248 359.7 (316.6) 108 379.0 (367.9) 0.616
Amylin (pg/ml) 347 24.4 (51.4) 242 20.5 (20.2) 105 33.4 (87.9) 0.031
Diabetes mellitus 313 15 (4.8%) 218 9 (4.1%) 95 6 (6.3%) 0.4
BMI 351 29.2 (7.9) 246 28.8 (7.3) 105 30.3 (9.1) 0.089
WHR 266 0.88 (0.08) 181 0.89 (0.08) 85 0.85 (0.07) 0.0001
Marijuana use since last visit 356 64 (18.0%) 248 41 (16.5%) 108 23 (21.3%) 0.295
Any indicator of hypertension* 356 129 (36.2%) 248 95 (38.3%) 108 34 (31.5%) 0.232
Total Cholesterol 356 176.7 (26.39) 248 175.4 (37.3) 108 179.8 (34.1) 0.296

[*Either SBP>=140, DBP>=90, self-reported hypertension, or taking anti-hypertensive medication]

Table 2: Characteristics of WIHS participants with gut hormone measures.
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these women were not at risk for late-onset, aging-related cognitive 
impairments or dementias. HIV+ women were approximately 4 
years older than HIV- women, however educational attainment, 
a key influencer of cognitive performance, did not differ between 
HIV+ and HIV- women. As previously reported, most participants 
were overweight or obese (≥ 25.0 kg/m2) and the frequency of 
central obesity was high. 

Correlations between anthropometric measures and gut hormones 
indicated modest associations in the directions expected for ghrelin 
and amylin (Table 3 and Figure 1). Notably the correlation coefficients 
were positive for anthropometric measures and amylin, and negative 
for ghrelin. No correlation was observed for GIP and anthropometric 
measures. In addition, there were lower average levels of amylin, WHR 

and BMI (p<0.10) among HIV+ women compared to uninfected 
women WHR was higher among HIV+ women. Neither ghrelin nor 
GIP was associated with HIV infection status.

Associations between gut hormones and cognitive test scores 
in linear regression models revealed an inverse association between 
amylin and Trails A in HIV+ and HIV- participants after multivariate 
adjustment (Model 2) (Table 4). An inverse association was also 
observed for GIP among HIV+ women. Ghrelin was inversely 
associated with Trails A and Stroop Color Naming time among HIV- 
women. Ghrelin was also associated with Stroop Word Reading time in 
HIV+ women, as was GIP. In summary, higher gut hormone levels were 
associated with better cognition.

  BMI Waist WHR
  Crude Age-adjusted Age-adjusted crude age-adjusted
  n r p-value r p-value n r p-value r p-value n r p-value r p-value
Log amylin 342 0.230 <0.0001 0.229 <0.0001 260 0.297 <0.0001 0.276 <0.0001 258 0.276 <0.0001 0.276 <0.0001
Log ghrelin 351 -0.182 <0.001 -0.181 <0.001 268 -0.202 <0.001 -0.2 0.001 266 -0.119 0.053 -0.116 0.06
Log GIP 351 -0.028 0.602 -0.050 0.417 267 -0.046 0.455 -0.059 0.344 265 0.059 0.342 0.024 0.699

Table 3: Pearson correlations between anthropometric measures and gut hormones. The Women’s Interagency HIV Study (WIHS).
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Figure 1: Correlation plots illustrating the association of anthropometric measures and gut hormones: The Women’s Interagency HIV Study (WIHS).
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  All HIV+ HIV-
Trails A                  
Log Amylin - Continuous              

Model 1 347 -2.85 (-4.90, -0.79) 0.007 242 -2.83 (-5.64, -0.04) 0.047 105 -2.03 (-4.83, 0.78) 0.156
Model 2 299 -2.44 (-4.74, -0.13) 0.038 211 -2.64 (-5.67, 0.40) 0.089 88 -1.78 (-5.10, 1.53) 0.287

Log GIP - Continuous              
Model 1 355 -1.28 (-2.98, 0.42) 0.141 248 -2.22 (-4.43, -0.02) 0.048 107 0.64 (-1.82, 3.10) 0.608
Model 2 307 -1.69 (-3.45, 0.06) 0.058 217 -2.41 (-4.67, -0.14) 0.037 90 0.24 (-2.42, 2.90) 0.859 

Log ghrelin - CATEGORICAL              
Model 1                  
Tertile 1 (low) 356 0 (ref)   248 0 (ref)   108 0 (ref)  
Tertile 2   0.38 (-3.59, 4.35) 0.851   3.42 (-1.64, 8.48) 0.184   -7.03 (-12.54, -1.51) 0.013
Tertile 3   -1.49 (-5.30, 2.33) 0.440   2.55 (-2.33, 7.43) 0.304   -10.7 (-15.94, -5.46) <0.001
Model 2                  
Tertile 1 (low) 308 0 (ref)   217 0 (ref)   91 0 (ref)  
Tertile 2   0.52 (-3.69, 4.73) 0.808   3.23 (-2.17, 8.63) 0.239   -6.94 (-12.88, -0.99) 0.023
Tertile 3   -1.49 (-5.49, 2.52) 0.465   2.49 (-2.65, 7.63) 0.340   -10.5 (-16.03, -4.96) <0.001

Trails B                
Log Amylin - Continuous              

Model 1 346 -0.83 (-7.49, 5.84) 0.808 241 -3.11 (-12.41, 6.20) 0.511 105 3.03 (-5.40, 11.46) 0.478
Model 2 298 2.34 (-4.87, 9.55) 0.524 210 0.09 (-9.51, 9.69) 0.985 88 5.67 (-4.47, 15.82) 0.269

Log GIP - Continuous              
Model 1 354 -1.23 (-6.72, 4.26) 0.659 247 -4.05 (-11.33, 3.24) 0.275 107 4.14 (-3.25, 11.53) 0.269
Model 2 306 -2.32 (-7.81, 3.17) 0.406 216 -4.58 (-11.72, 2.57) 0.208 90 2.6 (-5.67, 10.87) 0.533

Log ghrelin - Categorical              
Model 1                  
Tertile 1 (low) 355 0 (ref)   247 0 (ref)   108 0 (ref)  
Tertile 2   3.84 (-8.94, 16.63) 0.555   10.8 (-5.83, 27.43) 0.202   -11.91 (-29.69, 5.87) 0.187
Tertile 3   0.9 (-11.35, 13.14) 0.886   8.9 (-7.06, 24.87) 0.273   -17.23 (-34.11, -0.34) 0.046
Model 2                  
Tertile 1 (low) 307 0 (ref)   216 0 (ref)   91 0 (ref)  
Tertile 2   4.82 (-8.31, 17.95) 0.471   10.05 (-6.84, 26.94) 0.242   -10.13 (-30.09, 9.82) 0.316
Tertile 3   -0.64 (-13.08, 11.80) 0.919   6.3 (-9.71, 22.31) 0.439   -16.78 (-35.34, 1.78) 0.076

Digit Symbol                    
Log Amylin - Continuous              

Model 1 342 0.86 (-0.64, 2.36) 0.259 238 1.09 (-0.87, 3.06) 0.274 104 0.07 (-2.27, 2.40) 0.956
Model 2 295 -0.01 (-1.62, 1.61) 0.993 208 0.43 (-1.61, 2.47) 0.678 87 -0.85 (-3.57, 1.87) 0.536

Log GIP - Continuous              
Model 1 350 0.16 (-1.08, 1.40) 0.802 244 0.64 (-0.92, 2.19) 0.423 106 -0.76 (-2.78, 1.26) 0.460
Model 2 303 0.46 (-0.78, 1.69) 0.466 214 0.57 (-0.96, 2.11) 0.463 89 0.13 (-2.03, 2.29) 0.908

Log ghrelin - Categorical              
Model 1                  
Tertile 1 (low) 351 0 (ref)   244 0 (ref)   107 0 (ref)  
Tertile 2   0.72 (-2.17, 3.61) 0.624   -1.18 (-4.76, 2.39) 0.515   5.46 (0.63, 10.29) 0.027
Tertile 3   1.3 (-1.49, 4.08) 0.360   0.1 (-3.37, 3.57) 0.954   3.98 (-0.56, 8.51) 0.085
Model 2                  
Tertile 1 (low) 304 0 (ref)   214 0 (ref)   90 0 (ref)  
Tertile 2   1.03 (-1.92, 3.99) 0.492   -0.58 (-4.22, 3.06) 0.753   5.61 (0.44, 10.79) 0.034
Tertile 3   1.74 (-1.07, 4.55) 0.223   0.62 (-2.85, 4.10) 0.724   4.37  (-0.40, 9.13) 0.072

Stroop - Color naming time              
Log Amylin - Continuous              

Model 1 307 -0.09 (-2.68, 2.49) 0.944 212 0.07 (-3.36, 3.50) 0.968 95 0.18 (-3.65, 4.00) 0.926
Model 2 268 -0.17 (-3.01, 2.68) 0.908 186 0.33 (-3.26, 3.91) 0.858 82 -0.5 (-5.04, 4.03) 0.826

Log GIP - Continuous               
Model 1 314 -2.04 (-4.10, 0.01) 0.052 217 -2.88 (-5.50, -0.26) 0.031 97 -0.35 (-3.57, 2.86) 0.828
Model 2 275 -1.79 (-3.88, 0.30) 0.093 191 -2.27 (-4.92, 0.38) 0.093 84 -0.68 (-3.99, 2.64) 0.686

Log ghrelin - Categorical              
Model 1                  

Tertile 1 (Low) 315 0 (ref)   217 0 (ref)   98 0 (ref)  

Table 4: Gut-brain hormones in association with cognitive test score, by HIV infection status: the Women’s Interagency HIV Study.
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Discussion
Among women at mid-life with HIV infection for at least 10 years, 

or among those at risk, better performance on cognitive tests was 
generally associated with higher gut hormone levels. However, the 
strength of association varied, as did significance level by HIV status. To 
our knowledge, there are no published reports on these gut hormones 
in association with cognition in HIV-infection.

The importance of understanding the association of gut hormones 
with cognition, originates from published associations between high 
BMI and obesity or metabolic syndromes with cognition and dementia 
among HIV uninfected population samples [1,43-45]. High mid-
life BMI [2,43,44] central obesity (measured as waist circumference 
or WHR), [3,45] and T2D [46] have been shown to increase risk 
for Alzheimer’s Disease (AD) in uninfected populations. Simple 
anthropometric measures reflect different aspects of body composition, 
and, at best, are crude indicators of the body’s metabolism in response 
to energy intake. A high BMI is reasonably correlated with whole body 
amount of adipose tissue and higher energy intake in healthy HIV-
negative adults [47]. Going further to assess gut hormone associations 

among those with or at risk for HIV infection, may enhance our 
understanding of mechanisms underlying this association. High BMI 
and WC during mid-life are also related to other vascular risk factors, 
such as T2D [48], hypertension, and hyperlipidemia [49], which 
increase risk for cognitive impairments and dementia in non-HIV 
populations.

Amylin is interesting for cognitive brain health for several reasons. 
Potential key roles of amylin in cognition and AD are related to: 1) 
its co-secretion with insulin from pancreatic beta-cells to regulate 
postprandial glycemia; 2) its role in the development of T2D (amylin is 
deficient in T2D); 3) T2D being a risk factor for AD and vascular forms 
of dementia; and 4) amylin being pancreatic islet amyloid polypeptide 
(PIAPP), in comparison and contrast to the amyloid precursor protein 
(APP) that is differentially spliced to form the fragments that form 
amyloid-beta (Ab) that deposits in the aging brain and has been touted 
as the underlying neuropathologic molecule responsible for Alzheimer’s 
Disease [50,51]. Some data suggest that amylin may play a vital role 
at the interface between peripheral and neurodegenerative disorders, 
and that amylin and Aß interact in the brain [51]. Evidence to support 

Tertile 2   0.11 (-4.68, 4.90) 0.964   2.05 (-4.10, 8.19) 0.512   -4.1 (-11.38, 3.19) 0.267
Tertile 3   -5.48 (-10.07, -0.89) 0.019   -3.78 (-9.64, 2.09) 0.205   -9.45 (-16.47, -2.44) 0.009
Model 2                  

Tertile 1 (Low) 276 0 (ref)   191 0 (ref)   85 0 (ref)  
Tertile 2   -0.51 (-5.43, 4.42) 0.839   -0.66 (-7.00, 5.68) 0.838   -2.27 (-9.76, 5.22) 0.548
Tertile 3   -6.42 (-11.12, -1.72) 0.008   -5.8 (-11.79, 0.19) 0.057   -8.76 (-15.95, -1.57) 0.018

Stroop - Word Read time              
Log Amylin - Continuous              

Model 1 308 -0.38 (-2.53, 1.78) 0.731 213 -1.51 (-4.26, 1.24) 0.281 95 2.14 (-1.39, 5.67) 0.232
Model 2 269 -0.93 (-3.16, 1.31) 0.416 187 -1.88 (-4.58, 0.81) 0.169 82 2.32 (-1.74, 6.38) 0.259

Log GIP - Continuous                  
Model 1 315 -0.41 (-2.13, 1.30) 0.636 218 -1.55 (-3.66, 0.55) 0.147 97 2.07 (-0.87, 5.01) 0.166
Model 2 276 -0.48 (-2.11, 1.16) 0.565 192 -1.29 (-3.28, 0.70) 0.203 84 1.37 (-1.56, 4.31) 0.355

Log ghrelin - Categorical              
Model 1                  
Tertile 1 (low) 316 0 (ref)   218 0 (ref)   98 0 (ref)  
Tertile 2   0.82 (-3.13, 4.78) 0.683   1.56 (-3.33, 6.44) 0.53   -0.96 (-7.81, 5.88) 0.781
Tertile 3   -5.46 (-9.26, -1.66) 0.005   -5.14 (-9.82, -0.45) 0.032   -6.28 (-12.87, 0.31) 0.062
Model 2                  
Tertile 1 (low) 277 0 (ref)   192 0 (ref)   85 0 (ref)  
Tertile 2   1.32 (-2.51, 5.14) 0.498   0.32 (-4.40, 5.03) 0.894   3.21 (-3.46, 9.89) 0.341
Tertile 3   -5.36 (-9.02, -1.70) 0.004   -5.79 (-10.27, -1.31) 0.012   -4.91 (-11.32, 1.50) 0.132

Stroop - Interference time                   
Log Amylin - Continuous              

Model 1 302 -0.47 (-4.83, 3.89) 0.832 208 -1.19 (-6.79, 4.42) 0.677 94 -0.26 (-7.47, 6.96) 0.944
Model 2 265 -3.88 (-8.48, 0.73) 0.099 184 -2.93 (-8.50, 2.64) 0.301 81 -7.45 (-16.14, 1.22) 0.091

Log gip - Continuous              
Model 1 309 -2.59 (-6.04, 0.86) 0.140 213 -3.98 (-8.22, 0.27) 0.066 96 0.27 (-5.75, 6.29) 0.930
Model 2 272 -3.41 (-6.74, -0.07) 0.046 189 -4.07 (-8.11, -0.03) 0.049 83 -2.59 (-8.94, 3.76) 0.419

Log ghrelin - Categorical              
Model 1                  

Tertile 1 (Low) 310 0 (ref)   213 0 (ref)   97 0 (ref)  
Tertile 2   1.91 (-6.23, 10.04) 0.645   5.83 (-4.21, 15.87) 0.254   -5.98 (-20.13, 8.16) 0.403
Tertile 3   -6.31 (-14.14, 1.52) 0.114   -4.55 (-14.20, 5.10) 0.353   -9.9 (-23.53, 3.73) 0.153
Model 2                  

Tertile 1 (Low) 273 0 (ref)   189 0 (ref)   84 0 (ref)  
Tertile 2   4.83 (-3.20, 12.87) 0.237   7.17 (-2.63, 16.97) 0.151   -0.3 (-15.40, 14.80) 0.969
Tertile 3   -4.47 (-12.18, 3.25) 0.255   -4.09 (-13.42, 5.24) 0.388   -5.19 (-19.71, 9.32) 0.478
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the latter includes PIAPP being present in human cerebrospinal fluid 
(CSF), synthetic PIAPP promoting Aß oligomerization in vitro and 
endogenous IAPP localizing to Aß oligomers and plaques [52]. While 
higher levels of blood amylin are associated with higher BMI, lower 
blood levels of amylin have been observed in adults with more severe 
forms of cognitive impairment, such as dementia [18]. This is congruent 
with the low BMI and low leptin levels observed cross-sectionally in 
those with dementia, and that cognition is enhanced with the amylin 
analog, pramlintide [19]. Similar to other reports in HIV- samples that 
relate anthropometric measures to gut hormone levels, our findings 
demonstrate that higher amylin levels were associated with higher 
levels of overweight and obesity [53]. 

Ghrelin may also improve cognition [54]. Executive function 
and speed of information processing are the cognitive domains most 
commonly associated with these hormonal measures. Ghrelin plays a 
role in multiple physiological processes including appetite regulation, 
metabolism and, more recently, dendritic spine architecture, long-
term potentiation and cognition [55]. Small-molecule ghrelin receptor 
agonists readily cross the blood brain barrier and elicit pro-cognitive 
effects in recognition and spatial learning and memory tests [55]. 
Due to its ubiquitous and diverse character, ghrelin is also of interest 
as a Zeitgeber referring to environmental cues that resets the body’s 
circadian rhythm [56]. Meal times and the hormones associated with 
them are a subset of these internal cues and may help to synchronize 
circadian rhythms. Circadian rhythms are disrupted in AD [56]. In 
addition, declining circulating ghrelin has shown association with 
reduced appetite, reduced hippocampal neurogenesis and synaptic 
plasticity, weaker feeding-related zeitgeber, memory impairments, 
weight loss, and as aforementioned, disrupted circadian rhythms. All of 
these symptoms are associated with cognitive impairments and AD [56].

As shown in HIV- samples, ghrelin is inversely associated with 
BMI. However, in contrast with one published report on differences in 
several metabolic hormones and higher ghrelin levels in HIV+ versus 
HIV- controls, we observed no difference in mean ghrelin levels by HIV 
status [57].

GIP was not associated with cognitive test scores or HIV status, 
nor was it correlated with anthropometric measures. This may indicate 
agreement with the observed performance of GIP analogs versus 
native GIP in animal models in relation to cognition [27]. There is one 
published study on GIP in HIV infection, comparing those with versus 
without glucose intolerance [58]. GIP was associated with insulin 
secretion rates irrespective of glucose intolerance status. GIP has been 
associated with some cognitive outcome measures, primarily in animal 
models [24,26,27,29]. Results of studies on GIP or other incretins and 
their analogs in cognition and AD have not been reported.

The influence of ART on cognition and overall health in HIV is 
inconsistent depending on the severity of cognitive outcome being 
assessed and age of the infected. Data suggest no difference in the 
proportion of individuals with HIV-associated cognitive disorder 
(HAND) in the pre- versus post-ART eras [59]; however, the prevalence 
of AIDS dementias, the most severe form of impairment, has fallen 
precipitously concurrent with optimization of medication regimens 
and better care overall [60]. As HIV-infected populations survive to 
older ages, they may be at risk for more severe cognitive impairments 
and age-related dementias, such as sporadic AD. This would be a 
new phenomenon, but is speculative at this time. ART may also have 
cardiovascular side effects, such as atherosclerosis [61,62], DM [63] 
and hypertension [64], even in HIV-infected children [65]. These 
cardiovascular factors are related to risk for AD in populations without 

HIV infection; and cardiovascular risk factors are associated with worse 
cognition in persons with HIV [66,67]. Thus, this begs the question of 
whether we are setting the stage for a form of iatrogenic AD in HIV-
infected populations. While the positive influence of ART on cognition 
is clear [68]; there are several controversial studies providing data that 
suggest a negative influence [69]. Some studies show that discontinuing 
ART is associated with improved performance on cognitive tests [70]; 
and it has been speculated that certain ART regimens are deleterious 
for cognition [71]. Even so, alterations in gut tissue hormones, adipose 
tissue, adipose tissue distribution, adipose tissue hormones and/or 
lipid metabolism observed in HIV infection [31,72], may also create an 
altered vascular, metabolic and/or hormonal milieu that is undesirable 
for the brain [73]. 

This is a large study of gut hormones and cognition in women 
with and without HIV infection. Strengths include the large multi-
ethnic participant sample, and three gut hormone measures that have 
been evaluated to a limited extent in uninfected elderly samples in 
association with cognition. The primary limitations include a relatively 
few battery of cognitive tests, the existence of other unmeasured gut 
hormones of potential interest (e.g. GLP-155), a cross-sectional study 
design and analysis, and the average age of participants being 39 years, 
making it perhaps difficult to detect influencers of cognitive function. 
In addition, due to multiple comparisons, and relatively high p-values, 
one must also consider risk for false discoveries. Our analyses were 
not adjusted for multiple comparisons. However, since this is one of 
the first reports of common gut hormones in relation to cognition in 
HIV, we chose an empirical data analysis approach. Not adjusting for 
multiple comparisons is preferable because it leads to fewer errors of 
interpretation and follows more closely, untainted natural observations 
of association [74]. Of note, this investigation of gut hormones and 
cognition represents a site-specific (Brooklyn only) sub-study of 
middle-aged women within the greater WIHS multi-center network. 
While WIHS has collected much information on a variety of factors 
and biomarkers for over 20 years as a result of its interdisciplinary 
nature, due to the exclusive availability of gut hormone measures at one 
point in time at one site, our analysis capacity to integrate all additional 
WIHS data is limited. 

In summary, these data suggest the need for continued follow 
up of these women to determine mid-life and late-life effects of gut 
hormones, dietary factors and overweight and obesity on cognition and 
dementia in HIV. 
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