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Abstract

Dimensions of inclusion within the overall concept of neurodegeneration would appear to arise as inherent
consequences of the high metabolic rates of neuronal patho-physiology that dimensionally characterizes the sub-set
neuronal populations. It is valid to consider the essential neurodegenerative state as a highly inclusive pathobiologic
state of response to neuronal injury that elicits multiple pathways of apoptosis.

It is within the spectral manifestations for further heightened susceptibility that disorders such as Alzheimer’s,
Parkinson’s, Huntington’s and also other disorders of the CNS would include also specific manifestations within the
further contrasting specificities of disease states such as amyotrophic lateral sclerosis.

Hence, it is beyond specificity issues that the neurodegenerative state projects the overall dimensions of a
generic cell injury within the strict confines of highly selective sub-type neuronal pathobiology in terms of the
essential progressive manifestations of cell loss.

Introduction
Age-related progression of neurodegenerative states is associated

with the accumulation of mutant protein species in brain regions,
including the development of intra-neuronal inclusion bodies within
the nucleus and/or cytoplasm [1]. A combination of ATP and an excess
of produced reactive oxygen species (ROS) has been proposed as
central core phenomena leading to both inherited and sporadic forms
of neurodegeneration; this would occur in a manner that would
account for the wide range of phenotypic expression of such
neurodegenerative multiple process. Neuronal hyper-excitability due to
toxic effect exerted by astrocytes in patients with amyotrophic lateral
sclerosis may enhance calcium influx and affect mitochondrial
structure and physiology; ROS promote c-Abl signaling and thus
induced apoptosis [2]. Mitochondrial dynamics, such as their
architecture and connectivity through tethering and fusion/fission,
besides movement along the cytoskeleton, may cause
neurodegeneration; two mitochondrial fusion genes promote the
development of Charcot-Marie Tooth type 2A and autosomal
dominant optic atrophy [3]. Neurodegenerative states can arise
particularly in cases of mutation in key members of the fission/fusion
mechanistic pathways.

Mutations of glucocerebrosidase are regarded the most important
genetic vulnerability factor for Parkinson’s disease, with reduced
enzyme activity increasing alpha-synuclein toxicity [4]. In such
scenario, there appears to arise a variability of disease expression
linked intimately to heteroplasmy, threshold effect and spectrum of
both mitochondrial and nuclear mutations and deletions. [5]. Mutated
PINK1 and PARK2/Parkin are implicated in familial Parkinson’s
disease and serve as a centrally operative trigger mechanism for
autophagy of depolarized mitochondria [6]. Also, mitochondrial

protein deacetylation status enhances neuroprotection in bioenergetic,
oxidative and excitatory stress [7].

Potential for cellular interactions
There appears to arise a complex inter-potentiality that is crucial to

the pathogenic effects of ATP depletion on the one hand and of excess
ROS that is derived also from the variable degrees of dependence of
various groups of neurons on oxygen demand. The innate immune
response and inflammation are implicated in neurodegenerative states
[8]. The B-cell lymphoma-2 protein family determines integrity of
mitochondria in the setting of apoptotic insult [9]. Dysfunctional
states are indeed the essential precursors of neurodegenerative
disorders that account for the dementia, decreased cognition and the
relentless demise of various subsets of neurons.

These neuronal subsets are specifically localized in highly restricted
sites within the central nervous system, as evidenced in Alzheimer
disease and Parkinson’s disease; mitochondria are central to the
pathogenesis of many neurodegenerative disorders [10]. A mechanistic
connection appears to exist between extracellular beta-amyloid
deposition and phosphorylation, missorting and aggregation of
intracellular protein Tau in Alzheimer disease [11]. Ceramides may
induce depolarization and increased permeability of mitochondria,
increased production of ROS, cytochrome c release, Bcl-2 depletion
and caspase-3 activation by modulating intracellular signaling of
Akt/PKB and of mitogen-activated protein kinases [12].

Indeed, the progression of neurodegenerative disorders is a result of
a panoramic range of insults that arise especially within scenarios of
specific and non-specific targeting of various mutant proteins to the
mitochondria. Multiple mitochondrial diseases are associated with
ROS-induced injuries; thus, enhanced inducible nitric oxide synthase
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and nitric oxide production, decreased respiratory complex activity,
impaired electron transport and opening of the permeability transition
pores are implicated in mitochondrial dysfunction [13]. In various
ways, the inherent biology of mitochondrial metabolic pathways
accounts for the exhibited dimensions of insult that are translated as
excess release of a wide variety of highly apoptogenic molecules from
this organelle form. Hypoxia promotes hippocampal
neurodegeneration and impaired memory [14].

Unitary projections
Dimensions of sporadic neurodegenerative states arise as a possibly

unitary series of sequential steps that bear out the spectral
manifestations of neuronal injury that is essentially progressive.
Oxidative stress is associated with mitochondrial dysfunction in aging
and neurodegeneration; mitochondria are responsible for the
generation of ROS and are also their main target [15]. Alzheimer
disease is related to early deficits in regional glucose uptake in the
brain, regional brain atrophy and oxidative stress [16]; following a
metabolic insult, neurons conserve energy with activation of
mitophagy/autophagy and fusion/fission. Prolonged fission leads to
mitochondrial degradation and protein release [17]. ROS are an
integral scenario of the mitochondrial electron transport mechanisms
that impair in essential manner the respiratory activity of specific sub-
types of neuronal groups that morphologically and metabolically are
highly distinctive. Glutamate and mitochondria are important in
oxidative stress underlying neurodegeneration [18]. Peroxisomal and
mitochondrial dysfunction is intertwined through redox modulation,
and together with defective proteostasis are principal pathogenic
mechanisms in Alzheimer’s and Parkinson’s disease [19].

Neuronal demise is an essential dysfunctionality of various, highly
individualized forms of instability states that especially implicate
depletive energy supply to neurons. The gradual morphologic
degeneration of mitochondria within endothelial cells, pericytes and
perivascular astrocytic processes can be seen electron-microscopically
in Alzheimer disease [20].

Mitophagy is central to mitochondrial quality control, and is
involved in the activated cellular stress response, including aging and
neurodegeneration [21]; ubiquitin-ligation plays a major role in
mitophagy, particularly when mediated by PINK1 and PARK2/Parkin
[22].

MicroRNAs modified by mitochondria are likely to contribute to
post-transcription regulation of gene expression related to
mitochondrial functions [23]. The release of highly apoptogenic
molecules from mitochondria attest to the evolutionary history of
progressive injury to neurons, and mitochondrial homeostasis is
fundamental to qualitative cellular parameter control [24]. The highly
selective targeting of various subsets of neurons in mitochondrial
disease in general accounts for the projected dimensions of a dualism
of energy crisis and of the general array of apoptogenic molecules that,
in an overall manner, are respiratory-insufficiency mediated. An
interactive series of links exists between Parkinson’s disease genes
involved in mitochondrial function and neuroinflammation [25].

Synaptosomal bioenergetic defects appear related to early Alzheimer
disease [26]. Loss of nicotinamide adenine dinucleotide affects
multiple metabolic pathways, targeting the electron transport chain
and ATP production [27]. The activity of poly (ADP-ribose)
polymerase1 increases under conditions of oxidative stress and leads to

the accumulation of ADP-ribose polymers and NAD (+) depletion,
leading to induced energy crisis [28].

Selectivity of neurodegeneration
The selectivity of mitochondrial neurodegeneration pathways allows

for the primary variability in expression of a dynamic threshold series
of effects as those resulting from susceptibility of genes when neurons
are exposed to environmental toxins such as MPTP in parkinsonism.
Histone deacetylases are emerging drug targets in neurodegeneration
[29].

The overall phenomena of neuronal cell death pathways are vast
arrays of molecularly induced processes of accumulation and depletion
that arise within system biology of mitochondrial pathophysiology.
Programmed cell death is implicated in aging-associated
mitochondrial dysfunction and neurodegeneration [30]. Deficits of
respiratory enzymes, reduced calcium influx, mitochondrial DNA
defects and apoptotic proteins, and impaired mitochondrial membrane
potential promote severe energy deficit, with pro-neurodegeneration
progression in the aging brain [31]. The resulting neuronal cell loss
also arises as mitochondria- related secondary end-results that further
enhance the instances of primary mitochondrial DNA mutations,
deletions and depletions, as seen in classical mitochondrial diseases of
multi-systemic states of disease. Excitotoxicity is mediated by activated
glutamate receptors with increased Ca2+ influx and mitochondrial Ca2+

overload [32].

ATP depletion and ROS
Particularly relevant is the depletion of ATP that is linked to a

budding and dynamic turnover of mitochondria that in turn is
inherent to the mobility, fusion and fission processes of organelle
functionality and dysfunctionality.

Increasing evidence links mitochondrial dysfunction arising from
inherited mitochondrial DNA load or mitochondrial proteomic deficit,
to Parkinson’s disease [33]. The mobility of mitochondria is especially
evidenced in neural and axonal pathways in the distal portions of the
axon that pre-synaptically depend on large amounts of metabolic
energy provision central to ion fluxes in neurotransmission across
synapses.

Significant is the heteroplasmy of mitochondrial DNA that strictly
characterizes the various percent constitution of mutated and wild-
type DNA within organs, tissues and especially within the single cell.
Neurons constitute a highly susceptible target for such heteroplasmy of
mitochondrial DNA in view especially of the acute dependence of such
cell-type on provision of constantly evolving oxygen supplies.
Abnormal mitochondrial dynamics and quality control underlie
dysfunction in the pathogenesis of Parkinson’s disease [34].

HIV proteins released from infected cells induce neuro-cognitive
disorders possibly by altering mitochondrial fission/fusion in neurons
[35].

Target multi-specificity
A multiplicity of targets of injury in mitochondria-linked

neurodegenerative states is a core state of involvement that ranges
from neuronal injury to the evolving damage to skeletal myofibers and
the peripheral neuropathy. Peroxisome proliferator-activated receptors
regulate inflammation and multiple other pathways, inducing
neurodegeneration [36]. Such pathways of involvement are reinforced
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by the inherent patterns of neuronal axonal tracts that constitute the
CNS. Enhancement of mitochondrial oxidative phosphorylation via
alternative mitochondrial electron transfer may protect against
neurodegeneration [37]. Perforce phenomena of instability therefore
are a result of determined performance of emerging dysequilibrium as
evidenced by cortical neurons and as further proposed by such systems
as the spino-cerebellar tracts and the spinal axonal pathways in both
sensory and motor systems. Activated microglia secrete pro-
inflammatory and neurotoxic factors including Tumor Necrosis Factor
alpha and thus initiate apoptosis and neurodegeneration [38]. Both
TNF-induced oxidative stress and inflammation interact to promote
neurodegeneration by inducing the activation of ROS- and nitrogen
species-producing enzymes [39].

Neuro-transmission
The involvement of maternal transmission of mitochondrial DNA

mutations in the ovum is a fundamental phenomenon of
manifestations that range from hereditary modes of expression and
also sporadic neurodegenerative states that promote a segregation
series of patterns for further progression that result also in male
affliction.

Inclusive dimensions
Dimensions of inclusivity for further DNA damage is an expression

of a range of dynamic performance in metabolic processing that allows
for electron leakage from the respiratory electron transfer pathways
centered within the mitochondrial sub-compartments of neurons.
Cytochrome c released from mitochondria is often detected after acute
or chronic insults involving neurodegeneration and including
Alzheimer disease [40]. The exclusive manifestations of
neurodegeneration within the essential nervous system belies a multi-
system involvement that classically affects the endocrine organs and
renal tubules as specified by the ubiquitous participation of
mitochondria in terms of system biology of these organelles.

Specificity in dimensional manifestations includes the release of
highly apoptogenic molecules that implicate mitochondria as central
hub in the constitutional dysfunctionality in actively programmed cell
death. Glycation with the production of advanced glycation end
products is implicated in cases of neurodegeneration such as
Alzheimer’s disease [41]. Derivative consequences of the intrinsic
pathways of apoptosis lead to the further participation of such
pathways with many molecular systems of effective consequence as
evidenced by high degrees of susceptibility of neuronal sub-sets to
specific environmental toxins. Microglia has recently been recognized
as ROS producers in tauopathies, involving with tau
hyperphosphorylation a vicious circle central to neurodegeneration
[42].

Parameters of consequence
Parameters of consequence are progressive in a manner inherently

arising from the natural history of apoptogenic stimuli. Loss of
receptivity of neurons is a cardinal manifestation of neuronal
pathobiology in terms of sequential promotion of the neuronal injury.
In an essential manner, the specific subsets of neurons are
manifestations of the progressiveness of the cellular injury, on the one
hand, and for specificity of the neuronal involvement that participates
in highly permissive manner in the paradoxical parametric
manifestations of neurodegenerative states. Methionine metabolism is

linked to mitochondrial defects in respiration and may have important
implications in neurodegeneration in multiple sclerosis patients [43].

The further promotional dimensions of neurodegeneration are
inherently sporadic within the further scenarios of inherited disorders
that enhance the overall characterization of disease states ranging from
Alzheimer disease to Parkinson’s and to Huntington’s disease and
amyotrophic lateral sclerosis. It is inherent consequence of neuronal
cell loss that the dimensions for promotional recruitment for further
subsets of neurons progress as evidenced by the downhill clinical
course of neurodegenerative states. Both endoplasmic reticulum-
mitochondria stress and protein conformational disorders interplay as
a common mechanism in various neurodegenerative conditions [44].

Dynamics of progression
It is important to consider the overall dynamics of progression of

neuronal pathobiology as central core pathogenesis in
neurodegeneration. There is uncoupling of expression of
mitochondria-related genes in Alzheimer disease [45]. This arises from
the active participation of various toxic gains of function as evidenced
by various aspects of superoxide dismutase over-expression in some
familial forms of amyotrophic lateral sclerosis. Inflammation regulates
Bax expression that subsequently contributes to neurodegeneration of
nigrostriatal dopaminergic neurons [46]. The over-activity of many
neuronal sub-sets in various patho-physiologic states is shown
especially in terms of mitochondrial pathobiologies as portrayed by the
relentless course of neurodegenerative states in general.

Disruptions in lipid homeostasis (synthesis and degradation) appear
implicated in the development of some cases of Parkinson’s disease
[47].

The question of specific patho-physiologic states appears
paradoxically stable manifestations in such disease progression,
regardless of the essential dynamics of neuronal metabolic and
respiratory electron exchange. Mitochondrial deregulation leads to
metabolic reprogramming as an initial step to maintain neuronal
integrity in Alzheimer disease, thus providing a link between aging and
sporadic Alzheimer disease [48]. It is within scenarios for further self-
promotion of neuronal injury that a core pathway effect arises as
system pathology of exclusive neuronal pathobiology without
significant threshold variability in terms of systemic manifestations.
Lack of cytokine interferon-beta signaling leads to spontaneous
neurodegeneration in the absence of neurodegenerative disease-
inducing mutant proteins [49].

Neuronal toxicity
Toxicity of neurons emerges as central form of affliction in

neurodegeneration that is inherent as neuronal spectra for lowered
threshold effects and that are further promoted in terms of the
significant participation of ATP depletion within scenarios of ROS
over-generation.

Conclusion
The overall characterizations of neuronal injury allow for

paradoxical permissiveness in susceptibility of neuronal subsets within
the specific scenarios of proposed strict homeostasis that have evolved
and allowed for neuronal specialization leading to essential sub-set
pathophysiology. The pathogenesis of dimensional spread of
pathogenic molecular pathways is evidenced in the multiplicity of
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apoptogenic pathways of recruitment of specific sub-sets of neurons as
specific pathobiology.

The detailed portrayal of neurodegeneration as re-capitulation of
the system cell biology of mitochondria strictly characterizes the
nature and also mutability of the essential neurodegenerative state.

The highly variable manifestations of many states of
neurodegeneration may not be classifiable in terms of classic forms for
such pathobiology but paradoxically allow for flux promotion of
neurodegenerative states as substrates for further progression.
Permissive mutability is evidenced by high rate and metabolic
repertoire of individual neurons within systems of sub-set diversity of
response to neuronal injury, as further indicated by variable cell
receptivity.
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