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Introduction
Strokes are a major cause of death and result in a drastic reduction 

in the quality of life. The only effective therapeutic approach is 
thrombolysis with recombinant tissue plasminogen activator, and a 
new strategy to minimize ischemic-related damage is thus required. 
Over the past 10 years, regenerative therapy, which supplies new 
neurons or oligodendrocytes, has been extensively studied. Two 
tactics are proposed to supply new neurons or oligodendrocyte into 
the infarcted brain. One is the transplantation of extrinsic neural 
stem cells (NSCs) derived from stem cells such as embryonic stem 
(ES) cells and induced pluripotent stem (iPS) cells [1]. The other is 
the activation of intrinsic neural stem cells [2,3]. Although stem cell 
transplantation may be one promising method, tumorigenicity and 
rejection by immuno-response are potentially large hindrances for the 
application to a clinical setting. On the other hand, the endogenous 
capacity for regeneration now draws attention to the development of 
a novel therapeutic strategy for strokes. In addition, angiogenesis is 
also required to regenerate the neural network [4, 5]. In this article, we 
focus on endogenous neurogenesis/oligodendrogenesis/angiogenesis, 
and discuss current developments in this field with special emphasis on 
the therapeutic application for strokes (Table 1).

Intrinsic Neural Stem Cells and Neurogenesis
Persistent neurogenesis occurs in two restricted regions of the adult 

mammalian brain including the human brain: the subgranular zone 
(SGZ) of the hippocampal dentate gyrus [6] and the subventricular 
zone (SVZ) of the lateral ventricle [7]. In the SGZ, newly born neurons 
migrate into the granule cell layer and integrate into the neuronal 
network. In the SVZ, which is a thin cell layer in the lateral walls of 
lateral ventricles, NSCs continuously produce neural progenitor cells 
(NPCs) migrating into the olfactory bulb [8]. To discern whether the 
ischemic condition affects endogenous neurogenesis, we studied the 
temporal profile of NSC division, migration, and differentiation in the 

SGZ and the SVZ in the transient forebrain ischemia gerbil model. We 
found that the ischemic condition increased the division of NSCs of 
the SGZ with a peak 10 days after ischemic induction, following which 
cells migrated into the granule cell layer and differentiated mainly into 
neuronal cells [9]. Furthermore, we also found that transient forebrain 
ischemia enhances NSC proliferation in the SVZ with a peak 10 days 
after ischemia, leading to the migration of more NPCs to the olfactory 
bulb [10]. These studies indicate that ischemic stimuli could increase 
the number of NSCs and resulted in enhanced neurogenesis in the two 
restricted lesions, the SGZ and the SVZ. Many researchers reported that 
newly born neurons can be found in the post-infarcted lesion including 
the striatum and cortex in another animal model, the transient focal 
ischemia model [11,12], which is a mimic model of human cardio-
embolic stroke. To clarify whether SVZ NSCs supply new neurons 
to areas injured by ischemia, several study groups have performed 
region-specific cell labeling and long-term tracing experiments. SVZ-
derived NPCs were also reported to migrate towards the injured 
striatum after middle cerebral artery occlusion (MCAO). A long-term 
tracing study revealed that the SVZ-derived NPCs differentiated into 
mature neurons in the striatum, in which they formed synapses with 
neighboring striatal cells [13] (Figure 1), implying that the SVZ is one 
of the harbors supplying newborn neurons to brain lesions damaged 
by focal ischemia. 

Intrinsic Oligodendrogenesis and Future Therapeutic 
Strategy

In the adult brain, mature oligodendrocytes have been reported 
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to be produced from local oligodendrocyte precursor cells (OPCs) 
located in the brain parenchyma. Recent evidence indicates that SVZ 
neural stem cells also give rise to oligodendrocytes as well as neurons 
[14]. Menn et al. clearly demonstrated that SVZ astrocytes generate 
oligodendrocytes, which migrate to the corpus callosum and the white 
matter tract, by using GFAP-tva transgenic mice and avian retrovirus 
[15].

In the post-ischemic brain, newly born neurons and 
oligodendrocytes can be supplied from the SVZ, but this number may 
be too small for recovery of neurological functions. For example, newly 
born neurons could replace only 0.2% of the dead striatal neurons even 
in the rat MCAO model [11]. It has been reported that various kinds of 
neurotrophic factors including EGF [16], FGF2 [17], CNTF [18], IGF-
1 [19] and NGF [20], can promote neurogenesis in animal models. Of 
note, EGF may be a promising drug candidate because it can increase 
the number of precursors, promoting not only neurogenesis, but 
also oligodendrogenesis [21]. A recent study indicated that asialo-
erythropoietin promoted the maturation of SVZ-derived OPCs and the 
recovery of neurological function in a hypoxia ischemia mouse model 
[22]. However, the precise mechanisms that control the proliferation, 
survival, and/or neuronal maturation of intrinsic NSCs and their 
progeny must be known so as to use their intrinsic neural cell source 
for therapeutic purposes.

Endogenous Endothelial Progenitor Cells for 
Angiogenesis in the Ischemic Brain

Several studies from human and experimental stroke models 
indicate that angiogenesis can occur in the adult brain after a stroke 
[23,24]. In the past, the migrated neighboring endothelial cells have 
been regarded as the main cell resource for the regeneration of injured 
endothelial cells. However, several research groups reported that bone 
marrow-derived cells can incorporate and differentiate into endothelial 
cells at the border of the infarct lesion of the focal cerebral ischemia 
murine model [25,26]. Hess et al. reported that 34% of vessels of the 
peri-infarcted area were bone marrow-derived cells [25]. It has also 
been reported that a number of circulating, very small embryonic-like 

stem cells mobilized into peripheral blood in patients after a stroke 
[27]. These results indicate that bone marrow-derived endothelial 
cells can take part in angiogenesis, and can minimize the effects of an 
ischemic stroke.

However, increasing scientific reports suggest that there are non-
bone marrow-derived cells, which can also give rise to endothelial cells 
[28]. Recently, tissue-resident stem cells, which were isolated from the 
heart, have been shown to be capable of differentiating into endothelial 
cells [29]. Therefore, at present, it seems unclear which organ is the 
main resource for endothelial progenitor cells (EPCs). However, 
regardless of the origin, the circulating endothelial progenitors in 
peripheral blood may play an important role in vascular remodeling 
after a stroke (Figure 2).

Therapeutic Strategy Promoting Repair of Endogenous 
Endothelial Progenitor Cells

As discussed above, much evidence exists to show that EPCs take 
part in angiogenesis in ischemic tissue. Therefore, many researchers 
have tried various kinds of agents in the ischemic animal model, 
and test whether such agents can enhance the mobilization of EPCs, 
leading to augmented angiogenesis. Firstly, VEGF has been reported 
to play an important role in angiogenesis through mobilization of 
EPCs in an animal model and in human subjects [30,31]. Zhang et 
al. reported that administration of recombinant human VEGF at 48 
hours after the induction of ischemia enhanced angiogenesis in the 
peri-infarcted lesion and significantly improved neurological recovery 
in the rat model [24]. These results seem to suggest that VEGF can be 
a promising agent for minimizing ischemic-related injury, although 
issues regarding its utility as a therapeutic agent remain because 
administration of VEGF at 1 hour after ischemia increased blood brain 
barrier leakage, and worsened brain edema [24]. As another candidate, 
granulocyte colony-stimulating factor (G-CSF) also increased the 
number of circulating EPCs. To test whether G-CSF can promote 
angiogenesis, we administrated G-CSF to a focal ischemia rat model, 
and analyzed angiogenesis. We found that newly born endothelial cells 
were significantly increased in the G-CSF-treated group, compared 

Figure 1: The stage of endogenous neurogenesis/oligogenesis can be divided into three steps: proliferation, migration, and differentiation. Neural stem 
cells can proliferate in the subventricular zone (SVZ), and a sub-population of these cells can migrate toward the infracted lesion, and differentiate into neurons, or 
oligodendrocyte (OCs).  OPCs: Oligodendrocyte Precursor Cells.

Infarcted lesion

SVZ

Proliferation Migration Differentiation

OPCs OCs

Neural stem cells             Neuroblasts                      Mature neurons

Factor/Drug Suggested effect Reference
EGF Increase both NPCs number and OPCs number [21]
Asialo-erythropoietin Promote the maturation of OPCs [22]
VEGF Increase EPCs number for angiogenesis [30,31]
G-CSF Increase EPCs number for angiogenesis [32,45]
Statin Increase EPCs number for angiogenesis Promoting re-endothelialization. [40, 41]
Cilostazol Increase EPCs number for angiogenesis [43]

Table 1: Scientific evidence showing that the administrated factor/drug can enhance endogenous neurogenesis/oligodendrogenesis/angiogenesis.
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with the vehicle-treated group [32]. G-CSF has already been applied 
for idiopathic or chemotherapy-induced neutropenia and related 
indications such as bone-marrow harvesting, and seems to be a well 
tolerated drug [33]. Moreover, G-CSF can be administrated to patients 
subcutaneously. Therefore, G-CSF is now regarded as a promising 
candidate for modulating ischemic-related injury. In addition, 
erythropoietin also increased peripheral blood EPCs in mice and in 
human patients [34]. Interestingly, estrogen, a female sex hormone, 
has been reported to increase the level of circulating EPCs [35,36]. 
Moreover, exercise also increased the number of EPCs in mice and 
in men, probably through up-regulation of VEGF and angiopoietin 
[37,38]. The mechanism by which these factors augment EPCs is 
not fully understood. However, it has been reported that VEGF and 
exercise-induced mobilization of EPCs was blunted in endothelial 
nitric oxide synthase (eNOS) knock out mouse, suggesting that eNOS 
play an essential role in endothelial progenitor cell mobilization [39].

The first evidence for the pharmacological modulation of circulating 
EPCs by atheroprotective drugs came from studies with HMG-CoA 
reductase inhibitors (statins). Statins have been shown to increase 
the mobilization and re-endothelialization of EPCs in the balloon-
injured arterial rat model [40]. Chen et al. reported that treatment with 
atrovastatin for 14 days, which started from 24 hours after a stroke, 
showed increased VEGF, VEGF receptor 2 and BDNF expression 
in peri-infarcted lesions, and showed a significant improvement in 
functional recovery compared with untreated controls [41]. In the 
myocardial infarction murine model of eNOS null mice, mobilization 
of statin-induced EPCs was not detected, indicating that eNOS appears 
to be critical for the mobilization of statin-induced EPCs [42]. In 
addition, statin treatment of human endothelial progenitors was 
reported to up-regulate the expression of endothelial integrin α5 β1, 
which was associated with increased adhesive function of endothelial 
progenitors toward endothelial cells, indicating that statins may 
promote EPCs homing to the site of vascular injury [40]. Very recently, 
cilostazol, which is a selective inhibitor of phosphodiesterase 3, has 
attracted attention as another candidate for therapy. It has already been 
reported that cilostazol enhanced angiogenesis probably by promoting 
EPC mobilization both in the transient forebrain ischemia mouse 
model [43] and in the carotid balloon injury rat model [44]. In the 
future, EPCs need to be defined and the mechanisms involved in their 
beneficial effects need to be studied in detail.

Through new research, multiple novel neuronal self-repair 
strategies enhancing endogenous neurogenesis/oligodendrogenesis/
angiogenesis should be proposed for clinical settings in the near future.
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