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Leprosy is a chronic infectious disorder of the peripheral 
nervous system (PNS) caused by the infection of non-neuronal nerve 
cells, preferentially Schwann cells and resident macrophages, by 
Mycobacyerium leprae (ML) [1]. There is growing evidence suggesting 
that damage to the myelin sheath is due to a disturbed Schwann cell 
response in conjunction with immune cell participation [2-4]. Although 
demyelination is not easily found in neuropathic leprosy nerve biopsies 
(Figure 1), nerve conduction studies routinely used in leprosy referral 
centers indicate that demyelination occurs during most leprosy 
reactional episodes [5]. Moreover, nerve conduction analyses show 
that part of these patients recover from previous lesions after 6-month 
corticosteroid treatment (Jardim MR - personal communication). 
Other drugs that favor re-myelination are worth being investigated 
(Figure 1).

Since ML infection may also lead to up regulation of a large set 
of immune genes during the early stages of infection and recognizing 
that pro-inflammatory cytokines/chemokines are able to induce the 
breakdown of myelin in peripheral nerves, it is more likely than not 
that the demyelination process in leprosy neuropathy could also be 
immune-mediated [9,10]. Taking into account that peripheral nerve 
demyelination encompasses a multitude of signaling pathways as well 
as the orchestration of complex glial-axon-immune cell interactions, 
the complete understanding of the factors underlying the breakdown of 
myelin after ML infection requires further elucidation.

In this area of research, our group has consistently been shedding 
light on the role played by ML in modulating the inflammatory network 
of cytokines produced by Schwann cells and macrophages in vitro and 
in human peripheral nerves. Over the last decade, we have observed 
higher levels of mRNA for tumor necrosis factor (TNF) and their 
downstream-regulated metalloproteinases (MMP)-2 and -9 in leprosy 
nerves [11,12]. Moreover, TNF has also been detected in the dermis, 
epidermis, and serum of leprosy reactional skin lesions [13-15]. In the 

highly activated inflammatory infiltrates, higher levels of TNF mRNA 
have been detected than in the insidious processes of peripheral nerves, 
strongly indicating that this mediator plays an important role in the 
pathogenesis of neural injury in leprosy [11].

In addition, TNF is a central regulator of tissue inflammation in 
a variety of infections besides autoimmune and neurodegenerative 
disorders [16,17]. With regard to the PNS, Schwann cells, which 
constitutively express the TNF protein in non-injured nerves, robustly 
increase production after injury while also releasing a broad spectrum of 
pro-inflammatory mediators, including IL-1β, MCP-1, MIP-1, TGF-β, 
and galectin-3 [10,18].The early release of inflammatory mediators by 
Schwann cells and resident macrophages attracts additional immune 
cells to the damaged peripheral nerves, thus inducing an inflammatory 
burst in the infected nerves, chronically followed by axonal and myelin 
degeneration. In fact, while lack of IL-1β and TNF signaling impaired 
immune cell influx towards injured peripheral nerves in mice, higher 
levels of TNF were linked to neuropathic pain [19]. As such, leprosy 
patients frequently report neural pain sensations in consonance with 
the higher TNF expression observed in leprosy nerves [12,20].

In the paper entitled “Inflammatory Cytokines Are Involved in 
Focal Demyelination in Leprosy Neuritis”, we explored the role of 
TNF signaling as a major candidate for involvement in segmental 
demyelination during leprosy disease [21]. The above study observed 
that TNF, together with its receptor (TNFR) and the TNF-Converting 
Enzyme (TACE) were most often expressed by Schwann cells in the 
peripheral nerves of leprosy patients. However, our in vitro study 
showed that although ML upregulated the expression of membrane-
bound TNF, it did not induce cytokine secretion in these cells. The 
bacteria were also able to induce gene expression of TNF receptor 
1 (TNFR1), whose activation has been associated with many 
neurodegenerative diseases like multiple sclerosis [22]. Furthermore, 
ML was seen to induce IL-23 secretion, a cytokine linked to the onset 
of immune-mediated demyelination [23]. Likewise, TNF by itself was 
able to increase the secretion of IL-6 and IL-8 in Schwann cell cultures, 
indicating its potential contribution to the escalating inflammatory 
response during nerve injury.

The current review highlights the importance of both ML and 
TNF in eliciting demyelination related to Schwann cell infection. Even 
though ML did not induce TNF secretion, its ability to upregulate 
membrane-bound TNF and TNFR1 expression was demonstrated. 
Thus, ML renders Schwann cells more sensitive to the exogenous 
TNF levels in the nerve originated from resident macrophages in 

Figure 1: Semithin sections (0.5-μm-thick) of human nerve biopsy specimens of leprosy patients. Evidence of remyelinated 
fibers in leprosy patients with reactional neuritic episodes. A) Transverse semithin section showing remyelinating axons 
(asterisk) with relatively thin, myelin-sheath- wrapping axons. B) Concentric onion-bulb Schwann cell proliferation encom-
passing axons.

Figure 1: Semithin sections (0.5-μm-thick) of human nerve biopsy specimens 
of leprosy patients. Evidence of remyelinated fibers in leprosy patients 
with reactional neuritic episodes. A) Transverse semithin section showing 
remyelinating axons (asterisk) with relatively thin, myelin-sheath- wrapping 
axons. B) Concentric onion-bulb Schwann cell proliferation encompassing 
axons.This is an attempt to remyelinate nerve fibers (arrowheads). Note the 
reduced quantity of myelinated fibers during this stage of leprosy disease due 
to secondary axonal degeneration.
The mechanisms involved in nerve fiber damage in leprosy neuropathy have 
become controversial since Rambukkana and collaborators reported acute 
myelin stripping after direct ML binding to myelinated Schwann cells in vitro 
[6,7]. Conversely, Hagge and co-authors (2002) followed up of ML infection 
in myelinated Schwann cell-neuron-co-cultures for 30 days and observed no 
morphological alterations in the myelin structure of infected fibers in vitro [8].
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the early stages of injury and, later on, from recruited inflammatory 
cells. In view of the fact that this cytokine has been reported to be 
involved in demyelination, the induction of IL-23 by the bacteria 
once again reinforces the significant role played by Schwann cells in 
driving the initial immune response in the early stages of infection and, 
consequentially, their pivotal contribution to nerve injury [23-25].

The magnitude and underlying mechanisms entailed in nerve 
demyelination in leprosy neuropathy are subjects of debate. A more 
complete understanding of the host-pathogen interaction with the 
axon-myelin unit is crucial to the development of potential therapies 
for leprosy patients. In addition, our experience indicates that nerve 
conduction studies are a more reliable and reproducible method to 
detect myelin loss than routine nerve biopsies. However, these continue 
to be performed because they are the only means at our disposal to 
reliably confirm leprosy disease in patients that have no dermatological 
lesions or positive acid-fast bacilli skin smears. 

In this regard, two recent publications provide very novel 
information regarding future directions to be explored in detailing how 
myelin is broken down after nerve injury. Both articles have elegantly 
demonstrated that insulted Schwann cells digest their own myelin by 
activating intrinsic autophagic-signaling pathways [26,27]. Although 
there are few reports linking leprosy progression and autophagic genes 
a possible correlation between demyelination and the regulation of 
autophagic-related genes in infected Schwann cells deserves further 
investigation [28,29]. This is a prospective hot topic in the ML-Schwann 
cell crosstalk field that could elicit alternative views on the possible 
reasons behind myelin damage in leprosy disease.
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