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Introduction
Dravet syndrome (DS)is a devastating epilepsy syndrome, which 

was first described by Dr. Charlotte Dravet in 1978 [1]. Generalized 
or unilateral clonic seizures appear in previously healthy infants, and 
are frequently associated with fever [2]. These seizures tend to evolve 
into status epilepticus and occur frequently especially during the early 
phases of DS. Other seizures, including focal, absence, and myoclonic 
seizures appear later. Seizures are refractory to most currently available 
treatments, and severe intellectual disabilities develop after seizure 
onset, often accompanied by hyperactive behavior and autistictraits. 
Ataxia worsens with age, resulting in significant gait disturbance. 
Furthermore, 10–20% of the afflicted children experience premature 
death [3,4]. Thus, the development of new treatment is urgently needed.

Mutations in the SCN1A gene in patients with DS were first 
reported in 2001[5]. Subsequent studies supported the hypothesis 
that the SCN1A defect is the primary cause of DS [6,7]; these findings 
have triggered a number of studies attempting to uncover the 
pathogenic mechanisms underlying DS. These studies have employed 
electrophysiological functional analysis of forcedly expressed NaV1.1 
mutants [8,9], mouse models based on heterozygotes of an SCN1A 
knock-out/knock-in mouse [10,11], and more recently, human cellular 
models using patient-derived induced pluripotent stem cells (iPSCs) 
[12-14]. First, we briefly review previous research on DS and then 
describe our recent research on generating an iPSC model for DS.

Genetic alteration inSCN1A
SCN1A encodes the α-subunit of the voltage-gated sodium channel 

NaV1.1 (Figure 1) [15]. Abnormalities in the SCN1A gene were first 
reported in patients with genetic epilepsy febrile seizures plus (GEFS+) 
[15], and have been also identified in patients with other clinical 
phenotypes, including cryptogenic focal/generalized epilepsies [16]. 

However, DS is the primary phenotype in which arobust correlation 
with SCN1A defects has been confirmed [17,18]: 70–80% of patients 
with DS carry SCN1A abnormalities [19,20].

Nearly 700 mutations in theSCN1Agene that are associated with 
DS have so far been identified [21], and most of them are de novo. 
These mutations include nonsense, missense, splice site, and frameshift 
mutations, and are distributed throughout the gene. Specific genotype–
phenotype correlations remain unclear, but truncation mutations, 
harbored by half of the patients with DS, appear to be associated with a 
more severe phenotype than missense mutations [22]. Exonic or micro 
chromosomal deletions involving SCN1Aor its promoter region have 
also been identified in patients with DS [23-27]. Other genes potentially 
associated with DS or similar phenotypes include SCN1B [28], SCN2A 
[29], GABRG2 [30], and PCDH19 [31,32]. However, mutations in the 
former three occur rarely, andonly a minority ofpatients with PCDH19 
mutations present with the DS phenotype [33,34].

Functional alterations of mutated NaV1.1
Electrophysiological studies examining the functions of mutated 

NaV1.1 channels expressed in HEK293or tsA-201 cells have revealed 
that many of the DS-associated missense mutations result in an on 
functional sodium channel [8,9,35,36], and this loss-of-function of the 
channel may be associated with DS. One study revealed that expressed 
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truncated human NaV1.1 (hNaV1.1) did not affect the channel function 
of co-expressed wild-type human hNaV1.1, hNaV1.2, hNaV1.3, or 
hNaV1.6 [37]. It is also true that SCN1A abnormalities in DS frequently 
include truncation mutations (mainly nonsense mutations) and gene 
deletions, while there is little evidence showing that the truncated 
hNaV1.1 protein is expressed associated with nonsense mutation. 
Nonsense mutations of SCN1A gene could result in nonsense-mediated 
mRNA decay. Collectively, it is tempting to speculate that haplo 
insufficiency may be an underlying mechanism of DS. However, some 
missense mutations were found to induce gain-of-function of NaV1.1 
by way of activating sodium currents because of impairments in fast 
inactivation mechanisms [9]. It seems likely that the functional basis of 
SCN1A abnormalities related to DS may be more complex.

Dysfunction of GABAergic Interneurons in Mouse DS 
Models

Yu et al. first reported a mouse DS model based on Scn1a knock-
out in 2006 [10], which exhibited spontaneous seizures, temperature-
dependent seizure susceptibility [38], and ataxia [39]. They examined 
NaV1.1 expression in the hippocampal GABAergic interneurons, and 
found a reduced sodium current density and impaired action potential 
generation in those neurons of Scn1a−/− and Scn1a+/− mice compared 
to wild-type mice, while these were normal in the pyramidal neurons. 
Reduced sodium current density was also confirmed in the Purkinje 
neurons of these animals [39]: this reduced current density may be 
involved in the ataxia associated with DS. Ogiwara et al. identified a 
parvalbumin-positive subgroup of GABAergic interneurons, which 
directly regulates the excitation of pyramidal neurons, as the primary 
type of NaV1.1-expressing neurons in the neocortex and hippocampus 
[11]; moreover, intense NaV1.1 expression was identified in their axon 
initial segments. The researchers generated Scn1a knock-in mice with 
the R1407* mutation, which exhibited spontaneous seizures, autistic 
traits, and cognitive decline [40], and impaired action potential 
generation in their neocortical GABAergic interneurons. These 

heterozygous knock-out/knock-in mice were also prone to premature 
death [10,11].

Conditional SCN1Aknock-out, which was achieved by the 
Cre-mediated heterozygous deletion  of floxed exonic regions, 
helped elucidate the brain region responsible for some of the major 
clinical features of DS [41]. Specifically, Dlx1/2-enhancer-driven 
CredeletedScn1a in the mouse forebrain GABAergic interneurons [42]. 
These mice exhibited spontaneous seizures, temperature-dependent 
seizure susceptibility, premature death, and autistic traits[43], as was 
observed in mice with global SCN1A deletion. Kalume, et al. made an 
extremely interesting observation regarding the mechanisms of sudden 
unexpected death during tonic–clonic seizures [44]: the mice that died 
had increased seizure frequency and ictal bradycardia, which could be 
ameliorated by atropine, suggesting that an increase in parasympathetic 
activity occurs. SCN1A knock-out in the heart did not affect heart rate.

In the global knock-in and the conditional knock-out mice, 
administration of drugs that act to enhance GABAergic transmission, 
such as clonazepam, clobazam, or stiripentol ameliorated the seizures 
and behavioral impairments [43,45,46], supporting the notion that 
dysfunction of GABAergic interneurons is involved in the symptoms 
described above.

Human-Based Cellular Models for DS Developed Using 
Patient-Derived iPSCs
Generation of DS patient-derived iPSCs

Because it remains unclear whether mouse models faithfully 
reproduce the pathology occurring in the patient’s brain, it is desirable 
to study patient’s neurons directly. After the development of human 
iPSCs by Yamanaka et al. in 2007 [47], many neurological diseases have 
been modeled using patient-derived iPSCs [48-53], and pathogenic 
alterations have been identified in their differentiated neurons. Until 
recently, however, no such effort has been reported for epilepsy.

We recently generated two lines of iPSCs (D1-1 and D1-6) from 
a female patient with a core DS phenotype, who harbors a nonsense 
mutation in SCN1A (p.R1645*, Figure1) [12]. Reprogramming factors 
(Sox2, Klf4, Oct3/4, and c-Myc) were retrovirally transduced into the 
skin fibroblasts, which were biopsied from her upper arm at the age 
of 29 years. The generated iPSCs displayed undifferentiated status 
and pluripotency, harbored the patient’s mutation in their SCN1A 
gene, and could be efficiently and reliably differentiated into neuronal 
cells. Neuronal differentiation from the iPSCs was performed using a 
method established by Okada et al. [54] with a slight modification, in 
which a month of embryoid body formation is followed by 3–5 weeks of 
neurosphere formation. Terminal differentiation into mature neurons 
was achieved by adherent culture of dissociated or undissociated 
neurosphere cells. For control experiments, we used 201B7, an iPSC 
line that was developed from a healthy female [47].

Functional Vulnerabilities in Patient iPSCs-Derived 
GABAergic Neurons

Because iPSCs-derived neurons obtained by the method described 
above are highly heterogeneous with regard to their neuronal subtypes 
and maturities, it is critical to analyze only one specific type of 
neuronat a defined level of maturity in order to determine whether 
the neurons are actually pathologic. As a first step to overcoming 
these difficulties, we generated a lentiviral reporter for SCN1A 
expression for electrophysiological assays; this harbors one main 
SCN1A promoter sequence [26], followed by a5′-untranslated exon 
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Figure 1: NaV1.1 architecture and the location of the patient’s mutation.
NaV1.1 consists of one main pore-forming  α-subunit and two auxiliary 
β-subunits. The α-subunit comprises four homologous domains (D1–D4), 
each with six transmembrane regions (S1–S6). The channel pore is formed 
by the assembly of four linker regions between the S5 and S6 segments (solid 
arrowheads). Voltage sensitivity is mediated by positively charged residues 
in the S4 regions (open arrowheads) that move outward when depolarized to 
open the channel. The nonsense mutation of the patient was located in D4/S4 
(white star), which terminated at the R1645 residue, and the NaV1.1 protein 
looses the faded protein of the portion.
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(to enhance expression specificity) [55], and Venus cDNA (Figure 2): 
80–90% of the reporter Venus-positive neurons were NaV1.1 positive. 
Moreover, immunocytochemistry revealed that>50% of NaV1.1-
positive neurons, and >70% of the reporter Venus-positive neurons 
were GABAergic (GAD67 (GABAergic neuron marker) and GABA-
positive, respectively). VGlut1-positive (glutamatergic neuron marker) 
neurons appeared only rarely, and we could not evaluate their NaV1.1 
expression and functional properties sufficiently. These findings 
indicate that the reporter detects NaV1.1-positive GABAergic neurons 
with a high homogeneity.

Neuronal maturity is also critical for accurate functional 
assessment. For this purpose, we sought to improve the conditions 
for neuron selection in electrophysiological assays, and finally set the 
following requirements: 3–7 weeks (average, 30–45 days) of terminal 
differentiation period; clear reporter fluorescence; mature morphology 
(large cell body size and growth of ≥ 4 neurites); larger capacitance (≥ 30 
pF); and more negative resting membrane potential (≤ -30 mV). Using 
the current-clamp technique, the number and the amplitude of action 
potentials triggered by 500-ms depolarizing current injections were 
evaluated at various current intensities (input–output relationship). 
In the final analyses, functionally immature neurons, which generated 
<10 action potentials during the stimulation protocol, were further 
omitted.

Although the capacitances, resting membrane potentials, firing 
thresholds, and peak voltages of action potentials were identical among 
the different cell lines, input–output relationships differed when the 
injection currents intensified; there was a marked attenuation of both 
the amplitude and the number of evoked action potentials in patient’s 
neurons compared to control neurons (Figure 3). These findings may 
indicate a reduced output capacity of the patient-derived neurons, 

particularly in the GABAergic subgroup, and are reminiscent of 
findings from murine DS models [10,11].

Hyperexcitability in DS iPSCs-Derived Neurons
Liu et al. also generated iPSCs from two patients with DS and 

differentiated the cells into neurons by alternate methods [13]. The 
neurons were divided into two groups according to their morphology—
bipolar or pyramidal—and their electrophysiological properties were 
evaluated. In both groups of neurons, the patients-derived lines showed 
lower firing thresholds, higher sodium current densities, and a higher 
rate of spontaneously bursting neurons than cell lines derived from 
controls, suggesting hyperexcitability of DS neurons. Most recently, 
Jiao et al. also confirmed the hyperexcitability in excitatory neurons 
derived from DS patient-iPSCs [14]. Although such findings on the 
hyper excitability were not confirmed in our preliminary experiments 
(Higurashi et al., unpublished results), they provided a novel gain-
of-function hypothesis for the mechanisms underlying seizure 
susceptibility in DS, which have not been revealed by murine research. 
Further development of the iPSC research technique will be necessary 
to elucidate the precise mechanisms involved.

Future Directions of DS Research Using Patient-
Derived iPSCs

Disease modeling with patient-derived iPSCs has just begun, 
particularly in the field of epilepsy. Although the results of these two 
iPSC studies on DS are not immediately beneficial for patient treatment, 
they strongly indicate the utility of the new platform for human 
epilepsy research. In the next step, refinement of the culture technique 
and a more cell-type-specific analysis for various types of neurons (e.g. 
glutamatergic, parvalbumin-positive GABAergic, calretinin-positive 
GABAergic, and somatostatin-positive GABAergic, etc) will be 
necessary. The continued use of mouse models to confirm our findings 
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Figure 2: Diagram of the SCN1A reporter and neuron selection strategy 
for electrophysiological analyses: In the construct diagram, the yellow 
portion indicates the 5′-untranslated exonic sequence, and light blue indicates 
the 5′-untranslated sequence of the first coding exon. This construct was 
transduced into the dissociated neurospheres by using lentiviral vectors. After 
3–7 weeks of terminal differentiation, putatively mature neurons that satisfied 
several requirements (see main text) were selected for electrophysiological 
analysis. Functionally immature neurons with in adequate action potential 
generation were excluded from analysis. APs, action potentials; RMP, resting 
membrane potential.
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Figure 3: Representative traces of action potential trains and input-output 
relationships: (adapted from Reference [12] with modifications). (A) The 500-
ms current injection period is indicated below. The traces presented are those 
evoked by a 100-pA current injection. Toward the end of the current injection, 
D1-1 neurons showed more prominent attenuation of action potential amplitude 
compared to 201B7 neurons, as indicated by the dotted arrows. The frequency of 
action potentials was also lower in D1-1. Scale bars indicate 20 mV and 100 ms. 
(B)Mean of the total number of action potentials evoked during the 500-ms 
stimulation period vs. injection current intensity (input–out put relationship).
In all cell lines, the number of action potentials increased with intensifying 
currents. However, when current intensities exceeded60 pA, the rate of action 
potential increase plateaued in both patient lines, which was not the case in 
control cells.
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from iPSCs will facilitate the elucidation of key pathophysiological 
mechanisms and critical therapeutic targets in human patients with DS.
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