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Although new reports suggest that the therapeutic window 
for thrombolysis after stroke might be extended [1], there is still 
a compelling need to develop treatment strategies that target the 
majority of patients. Nevertheless, a slow but consistent recovery is 
often observed across a cross section of patients during rehabilitation 
without pharmaceutical intervention. Studies now show that the injured 
brain is primed for repair processes and brain remodelling contributes 
to functional recovery in many people following ischaemic stroke [2]. 
To this end, ischaemic insults have now been shown to trigger neural 
progenitor cell (NPC) proliferation and stem cell migration from the 
subventricular zone (SVZ) of the lateral ventricle to damaged regions 
of the brain [3], even in patients of advanced age [4]. Despite this 
attempt at endogenous repair, there is little evidence to suggest that 
significant improvement in neurological function during rehabilitation 
after stroke is attributed to neuronal replacement [2]. Rather, studies 
have now shown that migrating NPC’s remain outside the ischaemic 
territory, and most differentiate into astrocytes, potentially contributing 
to gliotic scar formation [5]. This raises the question of whether or not 
further recovery from stroke might be achieved if lost neurons were to 
be replaced.

For reasons above, development of neuro-restorative strategies 
to facilitate endogenous neuronal replacement presents a challenging 
new approach for stroke. Consequently exogenous cell-based therapies 
to complement endogenous repair mechanisms are currently being 
trialled in humans [6]. Although preclinical data supports their efficacy, 
little is known about the fate of these cells in the human brain and 
identifying factors that influence transplant survival, differentiation 
and integration with existing neuronal circuits in human patients 
is imperative for achieving translational success [7]. Establishment 
of the most suitable conditions in the brain to support neuronal 
recovery and replacement, as well as determining optimal timing for 
transplant success after stroke, are still key focus areas that are yet to be 
comprehensively addressed [8,9]. 

The goal of cell based therapies is to support ‘at risk’ neurons 
that are still participating in neural signalling after stroke and to 
‘reconstruct’ a lost neural circuit over time by administering a cell 
source that can integrate into and participate in functional neural 
circuitry. It is also desirable to implant and generate new neurons in 
addition to supporting the survival of cells already in situ. The search 
for the most suitable source of a restorative cell type for neural repair 
has been undertaken with great vigour and includes embryonic, foetal 
derived and non-neural adult-derived stem cells. Although survival 
of these cells following transplant has been documented in animal 
models, significant differentiation into functioning mature neurons 
is yet to be realised (<0.2) [7,10]. A supportive microenvironment 
may be necessary for ensuring long term graft survival and functional 
integration of cells into the damaged brain. Perhaps it is this reason 
that early clinical trials chose not to implant sooner than 6 months 
after stroke to avoid the acute phase associated with toxicity and infarct 
expansion [11]. However recent studies suggest that this late time may 
not be optimal either due to extensive glial scar formation and loss of 
factors that are known to support cell survival [12]. 

During the acute phase of stroke, microglia are activated within 

minutes, with peak inflammatory cell infiltration detected in animal 
models by 7 days [12,13], contributing to injury through several 
mechanisms. Astrogliosis is also detected between 3 and 7 days after 
stroke with evidence of gliotic scar formation commencing around 
the infarct border by 14 days, which thickens to eventually occupy the 
core infarct [12,14]. The neurovascular unit is also damaged primarily 
by reduced blood flow and secondarily by ensuing inflammatory 
processes. Vascular recovery in the form of angiogenesis is detected 
early after stroke and has been implicated in supporting brain 
regeneration, but new vascular networks are not evident until at least 
14 days [12], and then later regress by 6 months if recovery is not 
achieved [15]. Collectively, these factors contribute to an environment 
that is challenging for neuronal survival, repair and replacement: 
timing is thus one of the most crucial factors for consideration in 
transplant studies. Importantly, transplantation of stem cells may 
need to be combined with strategies that promote a more supportive 
microenvironment with reduced inflammation and scar formation, 
plus increased vascularisation for neuronal survival. 

Although capable of forming neuronal populations after transplant 
in animal models of neurotrauma, NPCs predominantly differentiate 
into astrocytes [10,16-18]. Astrogliosis in the injured brain is not a 
simple all-or-none phenomenon, but a finely gradated continuum 
of morphological changes regulated by specific signalling events 
that range from influence on brain preservation, to long-lasting scar 
formation with rearrangement of tissue structure [14,19]. What 
affect stem cell derived astrocytes might have on the human brain is 
unknown, however functional improvements with transplanted stem 
cells in pre-clinical animal models has been associated with release of 
growth factors that are supportive of brain remodeling. On the other 
hand, accentuation of the glial scar may in the long term impede brain 
plasticity associated with axonal elongation.

In order to facilitate direct neuronal replacement, optimization of 
protocols designed to pre-differentiate NPCs into a neuronal phenotype 
prior to transplant offer new hope. Indeed recent studies in other 
models of neurological disease have shown that pre-differentiating cells 
prior to transplant results in greater functional recovery: differentiated 
GABAergic human NPC’s injected into the spinal cord following 
spinal cord injury improved long term survival of GAGAergic cells that 
generated glutamic acid decarboxylase, GABA, and β-III tubulin, with 
greater functional improvement compared to animals receiving non-

Journal of Neurology & Neurophysiology
Jo

ur
na

l o
f N

eu
rology & Neurophysiology

ISSN: 2155-9562



Page 2 of 2

Citation: Roulston CL (2013) Challenges and Pitfalls Associated with Stem Cell Transplants for Stroke. J Neurol Neurophysiol 4: e114. doi:10.4172/2155-
9562.1000e114

Volume 4 • Issue 5 • 1000e114
J Neurol Neurophysiol
ISSN: 2155-9562 JNN, an open access journal 

differentiated cells [16]. Additionally, transplanted pre-differentiated 
GABAergic neurons have also been shown to improve functional 
outcomes in animal models of Huntington’s and Parkinson’s disease 
[17,18]. Moreover, GABAergic hNPC’s transplanted directly into the 
diseased brain were non-proliferative, demonstrating the stability 
of these cells and their reduced risk of teratogenic potential often 
associated with undifferentiated pluripotent stem cells.

Characterisation of factors that both hinder and aid brain repair 
is paramount to achieving successful outcomes for stem cell therapies 
aimed at improving and accelerating functional recovery. Timing after 
stroke is crucial and combined therapeutic strategies that target reduced 
inflammation and scar formation may offer added benefit. Equally 
strategies that facilitate long term re-vascularisation of the injury brain 
may be necessary to support long term survival of transplanted cells. 
Finally, optimisation of protocols designed to pre-differentiate cells 
into a desired neuronal phenotype prior to transplant may be a better 
approach for stably re-populating the damaged brain, not just for 
stroke but for all neurodegenerative disease. 
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