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Introduction
The World Health Organization estimates that 15 million people 

suffer strokes worldwide annually. More than five million die from the 
initial brain insult, and another five million are permanently disabled 
and require lifelong medical care (www.strokecenter.org/patients/stats.
htm). The National Institute of Neurological Disorders and Stroke 
(NINDS) classifies ischemic stroke types and determines incidence 
rates from population-based studies [1,2]. The NINDS estimates that 
cardioembolic stroke caused by an embolism from a cardiac source 
accounts for 29% of cases. Atheroembolic stroke, which is associated 
with narrowing of a cervicocephalic artery, makes up 16% of cases. 
Small vessel lacunar stroke, defined as pure motor, sensorimotor or 
sensory deficits with ataxic hemiparesis, results from thrombosis in 
one of the deep penetrating branches of the large cerebral arteries 
and accounts for 16% of cases [3]. Approximately 40% of ischemic 
strokes have an unknown cause [3]. Because oxidative stress is a major 
component of the ischemic stroke cascade [4], removal of free radicals 
may offer therapeutic benefits.

Several free radical scavengers have been assessed for their efficacy 
in the treatment of ischemic stroke, but few of these have shown 
success in studies conducted in Western countries [3]. In contrast, 
trials conducted in Japan have been more successful [3]. Indeed, several 
free radical scavengers have now been developed, and some of these 
(e.g., tirilazad and NXY-059) have progressed to clinical trials [5]. 
However, tirilazad produced inadequate therapeutic effects in patients 
with ischemic stroke and the trial was terminated. The Stroke-Acute 

Ischemic NXY-059 Treatment (SAINT)-II trial found that NXY-059 
was ineffective against ischemic stroke when administered within 4 h 
(mean time from onset of stroke to treatment, 3 h 46 min) after the 
onset of symptoms [6-8].

The free radical scavenger edaravone (3-methyl-1-phenyl-2-
pyrazolin-5-one, MCI-186, Radicut; Mitsubishi Tanabe Pharma 
Corporation, Osaka, Japan) exerts antioxidant effects by inhibiting 
hydroxyl radical-dependent and -independent lipid peroxidation [9,10]. 
This antioxidant activity, the main proposed mechanism of action, 
may protect against free radical-related injuries following ischemic 
stroke [11]. Edaravone also suppresses the increase in hydroxyl and 
superoxide anion radical levels in several models of ischemic stroke 
[12,13]. Unlike other free radical scavengers, edaravone readily crosses 
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the blood–brain barrier (BBB) [3], possibly explaining its efficacy 
where other scavengers have failed to show any.

In addition to its free radical scavenging effects, edaravone exerts 
unrelated effects that may be useful in the treatment of diseases other 
than ischemic stroke. To the best of our knowledge, no reports have 
reviewed edaravone’s potential use in the treatment of other neurologic 
diseases.

Therefore, the aims of this review are to present current research on 
the use of edaravone, primarily in animal models of various neurologic 
diseases, and to introduce a clinical study aimed at assessing the 
potential use of edaravone in the treatment of these diseases.

Edaravone efficacy in ischemic stroke: Experimental studies

Edaravone exerts its antioxidant effects by quenching the hydroxyl 
radical and inhibiting hydroxyl radical-dependent and hydroxyl 
radical-independent lipid peroxidation in both a focal ischemic 
model and a global ischemic model [9,10,14,15]. In early studies 
of the antioxidant activity of edaravone, its pKa was found to be 
7.0, and the rate of oxidation initiated with an azo compound was 
positively correlated with pH [15]. At 50 µM, edaravone inhibited 
the aerobic oxidation of unilamellar soybean phosphatidylcholine 
liposomal membranes initiated with either a water-soluble or a lipid-
soluble initiator [15]. A more recent study described the ability of 
edaravone to inhibit copper- and human umbilical vein endothelial 
cell (HUVEC)-mediated low-density lipoprotein (LDL) oxidation [14]. 
In rats, the mechanism of action of edaravone was found to involve an 
enhancement of endothelial nitric oxide synthase (eNOS) expression 
in HUVECs through stabilizing eNOS mRNA and reversing the 
inhibitory effect of oxidized LDL on eNOS expression [14]. The authors 
of that study speculated that the upregulation of eNOS and the decrease 
in LDL oxidation caused by edaravone may improve vascular blood 
flow, which may in turn have a protective effect in ischemic tissues. 
Additional studies have shown that edaravone suppresses the increases 
in hydroxyl radical and superoxide anion radical levels in both a focal 
ischemic model and a global ischemic model [10,16,17]. 

Many effects of edaravone have been reported in basic studies 
of ischemic stroke. Reactive oxygen species (ROS) and Ca2+overload 
during ischemia/reperfusion induce cellular damage by opening the 
mitochondrial permeability transition pore, a non-specific pore in the 
inner mitochondrial membrane [18]. Notably, edaravone attenuated 
Ca2+ induced swelling of mitochondria in the rat brain [18]. In a 
mouse focal ischemic model, the neuroprotective effects of edaravone 
were mediated via its antioxidant actions, including suppression of 
lipid peroxidation and oxidant DNA damage [19]. Edaravone also 
suppressed inducible nitric oxide synthase (iNOS) activity, thereby 
exerting anti-inflammatory effects by inhibiting microglial activity and 
peroxynitrite production [19]. In addition, data show that edaravone 
protects ischemic neurons from apoptosis by suppressing the 
expression of Fas-associated death domain protein, death-associated 
protein and caspase-8 immunoreactivity in a rat middle cerebral artery 
occlusion (MCAO) model, a focal ischemic model [20]. Edaravone 
has also been shown to have an anti-apoptotic effect mediated by 
a decrease in the level of B-cell lymphoma 2 (Bcl-2)-associated X 
protein immunoreactivity and an increase in the levels of the apoptosis 
regulator Bcl-2 immunoreactivity in a rat MCAO model [21]. The 
protective effect of edaravone in hypoxic/ischemic injury has also been 
attributed to inhibition of response to endoplasmic reticulum (ER) 
stress and subsequent apoptotic signaling in a focal ischemic model 

[22,23]. Using a standard ischemia model in gerbils, Jin and colleagues 
showed that edaravone could reduce edema and increase cerebral blood 
flow following ischemia [24]. They also showed that that edaravone and 
argatroban (a selective thrombin inhibitor and an anticoagulant agent 
used to treat acute noncardioembolic ischemic stroke) protect against 
damage to neuronal cells and increase the survival ratio (p<0.05 by 
Mantel-Cox test) [24], while another study revealed that edaravone can 
ameliorate damage when used in conjunction with argatroban [25]. 
Data from several animal models suggest that edaravone can suppress 
brain edema in hypoxic/ischemic conditions [26,27]. This effect is 
attributed to edaravone-mediated inhibition of vascular endothelial 
growth factor (VEGF) expression in astrocytes [26]. In addition to the 
inhibition of ROS generation, edaravone reduces the amount of ROS-
induced inflammatory reactions in ischemic stroke [28]. Oxidative 
stress activates nuclear factor-κB (NF-κB) and several mediators of 
inflammation (e.g., iNOS, cytokines and cyclocygenase-2) that are 
known to cause delayed damage to the ischemic area in stroke patients 
and models of stroke [29–36]. In cases of ischemic injury, edaravone 
can also reduce iNOS expression and suppress neutrophil activation 
and the accumulation of lipid peroxidation products and 4-hydroxy-2-
nonenal (HNE)-modified proteins [19,37]. 

Recent discoveries indicate many new benefits of edaravone 
in ischemic stroke. Several lines of evidence show neuroprotection 
after ischemic stroke. For example, ischemic stroke is associated 
with enhanced expression of metalloproteinase-9 (MMP-9) and 
aquaporin-4 (AQP4), which cause acute edema. It is also associated 
with the release of high-mobility group box 1 (HMGB1) from affected 
tissue. These events are associated with poor clinical outcomes [3,24,38-
40]. Edaravone is a low molecular weight agent that readily crosses the 
BBB, and its activity is not limited to the vascular compartment [41,42]. 
Furthermore, edaravone was reported to inhibit MMP-9-related brain 
hemorrhage in rats treated with recombinant tissue plasminogen 
activator (tPA) [40] and to attenuate cerebral ischemic injury by 
suppressing AQP4 expression in a focal ischemia model [27]. Moreover, 
edaravone rescues rats from ischemic stroke by attenuating the release 
of HMGB1 from neuronal cells in a focal ischemia model [38]. Taken 
together, these findings suggest that edaravone could be used to treat 
ischemic stroke by targeting and inhibiting the underlying molecular 
events associated with brain injury. In a tPA-treated rat MCAO model, 
edaravone prevented the dissociation of the neurovascular unit (e.g. 
neurons, glia and vascular cells), dramatically decreased hemorrhagic 
transformation (hemorrhages that develop inside areas of ischemia), 
and improved neurologic scores and survival rate[43].

Edaravone efficacy in ischemic stroke: Clinical studies

Edaravone was the first free radical scavenger developed as a 
neuroprotective drug to be introduced worldwide. Since 2001, it has 
been used in Japan to treat many patients with ischemic stroke [44,45]. 
It is currently approved only in Japan. Clinical trial data show that 
administration of edaravone within 72 h of ischemic stroke onset 
significantly reduces infarct volume and provides sustained benefits 
over a 3-month follow-up period [46]. Administration of edaravone 
within 24 h of ischemic stroke onset has also been performed in 
patients with lacunae, large-artery atherosclerosis, and cardioembolic 
stroke as shown by the beneficial effects on rehabilitation [47,48]. In 
a retrospective study of 72 acute ischemic stroke patients, Unno et al. 
reported that the total dose of edaravone was associated with gains in 
rehabilitation [47]. Furthermore, in a randomized, controlled pilot 
study of 41 acute ischemic stroke patients, edaravone treatment for 
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up to 14 days slowed the progression of disuse muscle atrophy and 
improved leg locomotor function to a greater extent than shorter-
term treatment (3 day treatment) [48]. Moreover, Shinohara and co-
workers studied the effects of edaravone in a mixed population of 401 
acute ischemic stroke patients including patients with thrombotic and 
lacunar stroke [25]. The study was part of a multicenter, randomized, 
parallel-group, open-label design comparing edaravone with sodium 
ozagrel (ozagrel) [25], an antiplatelet agent restricted to use in the 
treatment of acute noncardioembolic ischemic stroke[25]. The main 
conclusion was that edaravone was at least as effective as ozagrel [25]. 
These data showed that there was a trend toward decreased National 
Institutes of Health Stroke Scale scores in edaravone-treated patients. 
Furthermore, edaravonesuppressed reduced serum MMP9 levels in 63 
patients with acute ischemic stroke in another randomized study [49].

Edaravone efficacy in amyotrophic lateral sclerosis: 
Experimental studies

Amyotrophic lateral sclerosis (ALS) is a devastating 
neurodegenerative disease involving selective and progressive 
degeneration and disappearance of motor neurons. Since Cu/Zn-
dependent superoxide dismutase (SOD-1) was first identified as a 
contributing factor in familial ALS (FALS) in 1993, the possibility of 
a role of oxidative stress in the pathogenesis of FALS has been studied 
[50]. Oxidative lesions have been found in the nervous tissue of both 
sporadic ALS and FALS patients [51], and oxidative stress has been 
shown to contribute to the pathogenesis of ALS [52,53]. Mutant SOD1 
transgenic mice also recapitulate the clinical symptoms and pathological 
findings of human FALS [54]. Beneficial effects of edaravone in mutant 
SOD1 mice in randomized experiments with a blinded design have been 
reported [55]. The deposition of abnormal SOD1 in the anterior horns 
was reduced by edaravone administration, and edaravone effectively 
slowed symptom progression and motor neuron degeneration [55]. 
Whereas FALS is well represented by transgenic mutant SOD1 mouse 
models, the mouse mutant ‘wobbler’ develops progressive motor 
neuron degeneration as a result of a point mutation in the Vps54 gene, 
and provides an animal model for sporadic ALS [56]. There is evidence 
of increased oxidative stress in the spinal cords of wobbler mice, and 
beneficial effects of edaravone in these mice have been reported [57]. 

Edaravone efficacy in amyotrophic lateral sclerosis: Clinical 
studies

Yoshino and Kimura reported the results of a small-sized open trial 
of edaravone in 19 ALS patients [58]. Edaravone markedly reduced 
the concentration of 3-nitrotyrosine, which is indicative of oxidative 
cellular damage and is increased in sporadic ALS patients [52], in the 
cerebrospinal fluid of enrolled patients. In addition, edaravone reduced 
the rate of decline in ALS functional rating scale scores during the six-
month treatment period. Thus, treatment with edaravone may delay 
the progression of functional motor disturbances in ALS patients [58]. 
More promising evidence of the beneficial effects of edaravone in 
human ALS patients is expected with the publication of the results of a 
phase III clinical trial of edaravone in ALS patients, currently underway 
in Japan [59].

Edaravone efficacy in traumatic brain injury: Experimental 
and clinical studies

Like acute ischemic stroke, a large number of studies have reported 
that oxidative stress has a key role in the development of traumatic 
brain injury (TBI). Edaravone administration inhibited free radical-
induced neuronal degeneration and apoptotic cell death around the 

injured area, and improved cerebral dysfunction in a rat TBI model 
in which injury was introduced with a pneumatic controlled injury 
device [60]. Moreover, edaravone scavenged alkoxyl radicals in a rat 
cryoinjury TBI model [61], and, in a different study, increased neural 
stem cell numbers around the area of damage following TBI in rats 
[62]. Edaravone was also shown to scavenge alkoxyl radicals in 17 
human patients with TBI [63]. However, neither neurologic function 
nor outcome was evaluated in this study.

Edaravone efficacy in other neurologic diseases: Experimental 
studies

A neuroprotective effect of edaravone was observed in a 
Parkinson’s disease (PD) rat model, both in vitro and in vivo [64]. The 
rat PD model was produced by administration of 6-hydroxydopamine, 
a neurotoxin targeting dopaminergic neurons. The authors reported 
reductions in the numbers of terminal deoxynucleotidyl transferase-
mediated biotinylated UTP nick end labeling-positive apoptotic cells 
and hydroethidine-positive cells, suggesting that edaravone may have 
anti-apoptotic and anti-oxidative effects [64]. Staining for ionized 
calcium binding adaptor molecule 1 in a PD rat model revealed that 
inflammation was also suppressed after edaravone administration 
[64]. Edaravone also protects neurons from apoptosis after cranial 
irradiation and protects against spatial memory retention deficits in 
mice [65]. In addition, edaravone has been shown to protect human 
neural stem cells from radiation-induced apoptosis [30].

The neuroprotective effects of edaravone extend to spinal cord 
damage models. Edaravone administration reduced eNOS and SOD1 
levels after transient ischemia in rabbits (a rabbit MCAO model) 
[66]. Furthermore, edaravone reduced oxidative DNA damage, as 
shown by the prolonged expression of the redox effector factor Raf-
1, a multifunctional enzyme involved in the DNA repair process, 
in the spinal cord of the same rabbit transient ischemia model [67]. 
Moreover, evaluation of the effect of edaravone on lipid peroxide 
formation downstream of the ROS production cascade, by measuring 
malonyldialdehyde levels in injured spinal cord homogenates, found 
that edaravone significantly attenuated lipid peroxide formation by 
>45% in the acute stage of spinal cord injury in rats [68].

Anti-inflammatory effects of edaravone have been reported in a 
few experimental studies. In a murine experimental multiple sclerosis 
model, edaravone significantly ameliorated the clinical severity, 
reduced infiltration of lymphocytes and lowered iNOS expression 
[69]. Edaravone effectively inhibited NF-kB activation and decreased 
expression of chemoattractant protein-1, vascular cell adhesion 
molecular-1 and matrix metalloproteinase-2, resulting in significant 
inhibition of macrophage infiltration into aneurysmal walls of a rat 
cerebral aneurysm (CA) model generated by artery ligation [70]. 
Edaravone also inhibited enlargement and medial degradation of CAs 
without influencing systemic blood pressure in this rat model [70]. 
These results suggest the possibility of a preventive effect of edaravone 
against CA rupture.

Finally, edaravone was shown to attenuate intracerebral 
hemorrhage-induced brain edema, neurologic deficits and oxidative 
injury in rats [71]. Furthermore, edaravone reduced iron- and 
thrombin-induced brain injury in rats [71]. A clear and selective 
inhibitory effect of edaravone against hydroxyl radical-induced 
vasoconstriction was shown in the canine basilar artery in vitro [72].

Conclusions
The findings of recent research on the efficacy and mechanism of 

action of edaravone suggest tremendous potential for this scavenger 
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in the treatment of several neurologic diseases. However, edaravone is 
currently only used to treat ischemic stroke within Japan. The abnormal 
generation of free radicals appears to be common to the etiology and 
progression of multiple diseases, in particular, a variety of neurologic 
diseases. Therefore, edaravone may have potential therapeutic effects 
in patients with neurologic diseases. In addition, edaravone has been 
shown to have many effects beyond free radical scavenging, such as 
anti-apoptotic and anti-cytokine effects, in animal models of various 
neurologic diseases. To date, the therapeutic effects of edaravone in 
humans have only been reported in ALS and ischemic stroke patients. 
Further clinical studies are desired to extend the effects of edaravone 
seen in various animal models of disease to humans.
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