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Introduction
Dopaminergic neuronal dysfunction is the characteristic feature of 

neurodegenerative disorders such as Parkinson’s disease (PD). PD is 
typically characterized by the loss of nigrostriatal dopamine neurons, 
and the formation of intraneuronal inclusions termed ‘Lewy bodies’ 
[1]. Although the exact etiology of dopaminergic neurodegeneration 
in PD is unknown, genetic susceptibility and environmental factors 
[2] that mediate mitochondrial dysfunction, inflammation, abrogation
of the autosomal-lysosomal autophagy system [3] and endoplasmic
reticulum stress [4] are implicated to play a role in the disease
development. Currently, there is no effective cure for PD and the drugs 
used for the treatment are dopamine antagonists and monoamine
oxidase-B (MAO-B) inhibitors, which provide only symptomatic relief. 
A growing body of evidence suggests that nutritional components
such as green tea, blueberries, resveratrol, and Ginkgo biloba extract
offer protection against neurodegenerative disorders [5,6]. Several
herbal medicines and plant extracts have been evaluated in animal
models for their potential to ameliorate biochemical and physiological
abnormalities under experimentally- induced dopaminergic
neurodegeneration [7,8].

Curcumin (CUR) is a yellow coloring component present in the spice 
turmeric (Curcuma longa) that belongs to the family, Zingiberaceae. 
In the recent past, CUR has acquired tremendous importance in 
modern medicine due to its anti-inflammatory and chemoprotective 
property [9]. CUR has been used as traditional medicine for several 
decades in India and China. CUR has been demonstrated to exhibit 
marked protective activity against various neurologic diseases, 
including Alzheimer’s disease, multiple sclerosis, epilepsy, cerebral 
injury, age-associated neurodegeneration, schizophrenia, spongiform 
encephalopathies, neuropathic pain and depression [10-17]. Low 
concentrations of CUR were shown to inhibit dopamine toxicity in vivo 

[18] and inhibit MPP+toxicity in PC12 neuronal cell line [19]. CUR
has been demonstrated to exhibit neuroprotection in the 6- OHDA rat
model of PD [20]. Treatment of dopaminergic neuronal cells and mice
with CUR was shown to restore depletion of GSH levels, protect against 
protein oxidation, and preserve mitochondrial complex I activity [21].

Being hydrophobic in nature, CUR is insoluble in water but soluble 
in ethanol, dimethylsulfoxide, and acetone [22]. Poor solubility in 
aqueous solution remains a major limitation for the bioavailability and 
clinical efficacy of CUR. Various strategies such as encapsulation in 
liposomes, biodegradable microspheres, cyclodextrin, and hydrogels have 
been explored in order to increase its solubility and bioavailability [22]. 
Solubility and phase-distribution studies have shown that curcuminoids 
with side groups on the phenyl moiety have a higher affinity for the γCD 
[23]. The uniqueness of the present study lies in the fact that we rendered 
the CUR hydrophilic by making an ‘inclusion compound’ with gamma 
cyclodextrin (γCD) [23]. Several laboratories have employed C. elegans 
as a model organism to inquire the molecular and genetic mechanisms 
contributing to PD [24-26]. The translucent worm is an excellent model 
for monitoring the physiology and pathophysiology of dopaminergic 
neurons in vivo, by selective expression of green fluorescent protein driven 
by dopamine transporter (dat-1) promoter [27-29]. Accordingly the 
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primary aim of the study was to examine the therapeutic potential of CUR 
under neurotoxin exposure employing C. elegans as the model system. 
The neuroprotective efficacy of CUR was investigated against the standard 
neurotoxin- OHDA which induces dopaminergic neuronal dysfunction, 
as well as a neurotoxic insecticide, monocrotophos (MCP) which has been 
shown to affect the dopaminergic neuronal functions [30] to compare 
the extent of protection offered under tow different neurotoxic insults. 
We employed the wild-type (N2) worms to determine the locomotor 
phenotype, reproductive parameters, life span and used transgenic strain 
BZ555 (Pdat-1: GFP; bright GFP observable in dopamine neuronal soma 
and processes) to determine the extent of protection offered by CU against 
neurodegeneration of dopaminergic neurons.

Materials and Methods
Chemicals

Curcumin (Analytical Grade, 96% pure) was gifted by Dr. Pura 
Naik (CSIR - CFTRI, Mysore, India). Both Monocrotophos (MCP, 
97%) and 6-OHDA and 2-Nonanone were purchased from Sigma-
Aldrich Co. (St. Louis, MO, USA). All other chemicals used were of 
analytical grade.

Worm and Escherichia coli strains 

Wild-type C. elegans (N2), transgenic strain (BZ555) and E. coli 
(OP50, a uracil auxotroph) were provided by Caenorhabditis Genetics 
Center (CGC, Minneapolis, MN, USA) funded by the National Center 
for Research Resources (NCRR). 

Preparation of γCyclodextrin (γCD)+Curcumin (CUR) 
inclusion compound

Inclusion compounds of γCD and CUR were prepared as described 
by Kashima et al. [31] with minor modifications. A sterile γCD solution 
was prepared by filtering a nearly saturated γCD (200 mg/ml) solution, 
and this was mixed with curcumin (50 µM, dissolved in Ethanol) in a 
shaker at 120 rpm overnight to obtain the inclusion compound. The 
inclusion compound was mixed with M9 buffer and OP50 for 12 h. The 
final solution was spread on a peptone-free NGM plate with known 
amount of test compounds (Monocrotophos, MCP; 0.75 mM in distilled 
water and 6-OHDA; 25 mM in distilled water). Age synchronised L4 
worms were introduced into the plates and incubated at 20°C. The 
worms were recovered after 24 h for evaluating physiological endpoints. 
For biochemical parameters, inclusion compound was mixed with 
K-medium and OP50. L4 worms were exposed to the test compounds
for 24 h in 12 well microtitre plate containing 1 ml K-medium in each
of the well with test compounds as above.

Worm maintenance and treatment

All developmental stages of C. elegans were maintained in 70 mm 
Petri plates on Nematode Growth Medium (NGM) (0.032 M KCl, 0.051 
M NaCl, 0.1 M CaCl2, 0.1 M MgSO4, 2.5% Bactopeptone, 0.17% Bacto–
agar and 0.01% cholesterol) seeded with OP50 (Escherichia coli - uracil 
auxotroph) as the food source [32]. The gravid worms were washed 
out of the NGM plates using K-medium (50 mM NaCl, 30 mM KCl in 
distilled water) and the eggs synchronised by alkali-bleaching method 
[33]. Age synchronised L4 worms were exposed to varying concentrations 
of MCP (50,100 and 200 µM in distilled water) for 24 h in 12 well microtitre 
plate containing 1 ml K-medium in each of the wells.

Nonanone repulsion assay

Nonanone repulsion assay [34] was employed for indirect 
measurement of the DA contents since any deviation from the 

normal DA levels affects response time of the worms to the volatile 
repellent nonanone. This assay was carried out to select the efficient 
concentration of CUR for further studies. For the assay, we dipped an 
eyelash hair glued on a toothpick in nonanone and placed it in front 
of a forward-moving animal on a NGM plate without food. The time 
taken by the worm to reverse the path was noted. The assay was carried 
out for ten worms in each treatment group, three times in triplicates 
and the response time was calculated in seconds.

Treatment of worms with 6-hydroxydopamine (6-OHDA), 
Monocrotophos (MCP) and Curcumin 

To induce neurodegeneration, worms (L4 stage) were exposed to 
6-OHDA (25 mM) (for dopaminergic neurodegeneration) and MCP
(0.75 mM) (for neurotoxicity) mixed with OP50, plated in NGM. The
MCP concentrations used in the present study were selected based on
our earlier study wherein these levels were found to affect the motility
and acetylcholinesterase activity in the worms [30]. For co-exposure
paradigm, CUR solution (50 µM) was added along with OP50 before
plating. The concentration of CUR was selected based on the nonanone 
repulsion study. The exposure time for all the experiments was 24 h.

Phenotype measurement (analysis of locomotion)

To quantify the development of phenotype, we analysed the 
locomotor behaviour of worms of various treatment groups. After 
treatment, the worms were transferred to agar plates with bacterial 
food. Locomotion rate was quantified by counting the number of body 
bends produced by a worm in 20 sec under a stereomicroscope. Ten 
worms were studied in each exposure group [35].

Egg laying activity 

Ten treated worms were randomly picked from each exposure 
group including control and were transferred to NGM plates. The 
number of eggs laid by each worm during 1 h after exposure period 
was counted [36]. 

Determination of brood size 

Following exposure, the worms were washed with K-medium and 
a single worm was picked and transferred to a 12-well tissue culture 
plates containing 1 ml K-medium, which contained E. coli at a dilution 
of 1 O.D at 550 nm. The plates were incubated at 20°C for 72 h. After 72 
h, the worms were washed, pelleted and the progeny was counted under 
the dissecting microscope [37]. The average numbers of offspring from 
three wells were obtained for each test replicate, and the testing was 
repeated three times.

Effect on life span 

Following exposure, the worms were washed thrice with K-medium. 
20 ± 1 L4 worms were re-exposed in a 12 well plate containing 
K-medium with OP50 and 5-fluoro-2-deoxyuridine (FudR, 50 µM).
Worms were maintained at 20°C. The survival was scored every day.
Worms that failed to respond to touch were considered as dead. The
survival was checked until all the worms were dead [38].

Determination of acetylcholinesterase (AChE) activity

After the exposure period, the worms were washed thrice with 
K-medium, pelleted and then homogenised in buffer (100 mM Tris-
HCl, pH 8) followed by centrifugation at 10,000 rpm for 10 min at 4°C. 
The supernatant was used for assaying acetylcholinesterase activity
employing the method of Ellman et al. [39] rendered suitable for
microplate reader analysis [40].
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rate (64%), while worms exposed to MCP showed a 52% reduction 
in locomotion rate. Interestingly, in the co-exposure paradigm, CUR 
treatment significantly restored the locomotion rate among worms 
exposed to both 6-OHDA and MCP (Figure 2).

Egg-laying activity

The egg laying activity was comparable between control and CUR 
treated worms. In contrast, a significant decrease (56%) in the egg laying 
function was evident among worms exposed to either 6-OHDA or MCP. 
However, CUR treatment significantly enhanced (22%) the egg laying 
function in the worms exposed to either 6-OHDA or MCP (Figure 3A).

Brood size

A marked reduction in brood size was evident among worms 
exposed to neurotoxins (6-OHDA-25%; MCP-31%). However, in the 
co-exposure paradigm, CUR treatment marginally increased the brood 
size among worms exposed to either 6-OHDA or MCP (Figure 3B).

Life span 

In our laboratory, N2 worms grown under standard laboratory 
conditions (22°C) have a mean lifespan of 28 days. However, worms 
maintained on NGM containing CUR (50 µM) showed a statistically 

Quantification of dopamine (DA) levels 

After exposure, the worms were washed thrice with K-medium 
and homogenised in buffer A (50 mM Tris–HCl buffer pH 7. 4+0.1% 
Tween 20) followed by precipitation with 10% TCA and centrifugation 
at 10,000 rpm for 10 min at 4°C. The supernatant was filtered through 
0.25 µm nylon filters. Dopamine was quantified in the supernatant by 
high-performance liquid chromatography (Shimadzu HPLC) with an 
electrochemical detector (ECD) consisting of a high-pressure isocratic 
pump, a 20 µl sample injector valve, C18 reverse phase column, and 
electrochemical detector. Retention time (RT) for dopamine peak was 
between 11.9 and 13.3 min of the run time. DA levels were calculated 
from an external standard curve and expressed as pg/mg protein [41].

Analysis of degeneration of dopaminergic (DA) neurons 

L4 stage transgenic worms BZ555 (Pdat-1: GFP; bright GFP 
observable in dopamine neuronal soma and processes) were exposed 
to different concentrations MCP and OHDA mentioned above for 24 
hours. After the exposure period, the worms were washed thrice in 
K-medium to get rid of any adhering bacteria. The worms were pelleted 
by centrifugation at 3000 rpm for 3 min. The pellets were suspended in 
a minimum volume of K-medium. Microscopy of living young adults
was performed by placing the worms on glass slides with small aliquots 
of sodium azide (55 mM) used as an anesthetic, and visualising GFP
with a CX31 (Olympus) fluorescence microscope fitted with a camera
(C-7070 Wide Zoom, Olympus). All images were acquired at 40X
objective and aperture size 4.8 and processed with Image J software for 
enumerating the green pixel number [26]. The integrity of DA neurons 
was evaluated by visual scoring of GFP intensity separately in two pairs 
of cephalic neurons (CEPs) and one pair of anterior deirid neurons
(ADEs). Three independent experiments were conducted for each
exposure with at least ten worms per exposure group.

Statistical analysis

All the experiments were conducted at least three times with three 
replicates each. Mean and standard error (SE) were determined for all 
the parameters, and the results were expressed as mean ± SE. The data 
were analysed employing analysis of variance (ANOVA) followed by the 
Tukey’s multiple comparison tests. The mortality data were subjected to 
Kaplan–Meier survival analysis to prepare survival curves and the data 
were compared with untreated worms. All the calculations were carried 
out by Graph Pad Prism version 5 (computer software program).

Results
In the present study, initially we used three concentrations of 

curcumin (25, 50 and 100 µM) to screen the protective effect. CUR 
alone (25 and 50 µM) did not show any significant difference from 
control worms in terms of repulsion time (3.0 ± 0.01 s). However, 
worms exposed to both the neurotoxins exhibited marked increase 
in repulsion time (6-OHDA: 10.0 ± 0.03 s; MCP: 7.3 ± 0.17 s). CUR 
treatment significantly reduced the repulsion time in worms exposed to 
both 6-OHDA and MCP compared to the time taken by the neurotoxin 
treated worms (Figure 1). CUR did not seem to exert a concentration-
dependent protective effect. Since CUR at 50 µM offered optimum 
protection, this concentration was selected for all the further studies. 

Assessment of phenotype (Locomotion rate)

CUR (50 µM) treatment did not induce any significant alterations 
in the phenotype as the locomotion rate was highly comparable to 
those of untreated control worms. However, worms treated with the 
neurotoxin, 6-OHDA exhibited marked decrease in the locomotion 
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Figure 2: Effect of Curcumin (CUR) treatment on the locomotory response in C. elegans. Values 
represent mean ± S.E (n=9).  aRepresents significant difference between control and MCP or 
OHDA treated groups (P ≤ 0.001).; bRepresents significant difference between MCP and 
MCP+CUR  treated groups (P ≤ 0.05). 
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significant increase in lifespan compared to controls, with a lifespan of 
31 days. In contrast, 6-OHDA and MCP exposure caused a significant 
reduction in the lifespan to 18 days. Interestingly, in the co-exposure 
paradigm, CUR treatment enhanced mean lifespan of worms exposed 
to 6-OHDA (22 days) and MCP (24 days) (Figure 4) suggesting its 
potential to improve survival.

Acetylcholinesterase (AChE) activity

While CUR alone treatment had no significant effect on the 
activity levels of AChE, exposure of worms to neurotoxins significantly 
(6-OHDA-57%; MCP-52%) reduced the AChE activity. In the co-
exposure paradigm, CUR treatment marginally restored the activity 
among worms exposed to either 6-OHDA or MCP (Figure 5).

Dopamine (DA) content

CUR alone treatment did not show any significant effect on the DA 
levels. However, worms exposed to the neurotoxins exhibited markedly 
reduced DA levels (6-OHDA-64%; MCP-60%). In the co-exposure 
paradigm, CUR treatment significantly restored the DA levels among 
worms exposed to either 6-OHDA or MCP (Figure 6).

Analysis of degeneration of dopaminergic (DA) Neurons

Worms treated with 6-OHDA and MCP showed significant loss 
within processes of CEP and ADE neurons compared to the untreated 
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Figure 4: Survival curves of C. elegans of various treatment groups. The survival rates were subjected to 
Kaplan–Meier survival analysis to prepare survival curves and the data were compared with untreated worms. P 
values ≤ 0.05 were considered as significant.
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Figure 6: Effect of Curcumin (CUR) treatment on the Dopamine content in C. elegans. Values represent mean ± 
S.E (n=3). aRepresents significant difference between control and MCP or OHDA treated groups (P ≤ 0.001). 
bRepresents significant difference between MCP or OHDA and MCP+curcumin / OHDA+curcumin treated 
groups (P ≤ 0.05). 
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worms (Figure 7A-7E). Further, a visibly marked reduction in GFP 
expression was also evident with neurotoxin exposed (72-77% 
respectively) was also evident in these worms (Figure 7G). However, 
worms co-exposed to CUR with either 6-OHDA or MCP showed a 
marginal increase in fluorescence intensity compared to those treated 
with either 6-OHDA or MCP alone (Figure 7D and 7F). 

Discussion
The primary objective of the present study was to assess the 

protective potential of hydrophilic CUR against experimentally 
induced neurodegeneration in C. elegans. CUR is fat soluble, and several 
previous studies have either used DMSO or added it to culture media. 

Figure 7: Modulatory effect of Curcumin (CUR) treatment on GFP expression in dopaminergic neurons of transgenic C. elegans 
(BZ555). A- Control, B- Curcumin (50 µM), C- MCP (0.75 mM), D- MCP (0.75 mM)+Curcumin (50 µM), E- OHDA (25 mM), F- OHDA (25 
mM)+Curcumin (50 µM). (G) Graphical representation of fluorescence intensity of GFP in dopaminergic neurons of transgenic C. 
elegans as quantified using Image J software; Values represent mean ± S.E (n=9). aRepresents significant difference between control 
and MCP or OHDA treated groups (P ≤ 0.001). bRepresents significant difference between OHDA and OHDA+curcumin treated groups 
(P ≤ 0.05).
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Figure 7: Modulatory effect of Curcumin (CUR) treatment on GFP expression in dopaminergic neurons of transgenic C. elegans (BZ555). A- Control, B- Curcumin (50 µM), 
C- MCP (0.75 mM), D- MCP (0.75 mM)+Curcumin (50 µM), E- OHDA (25 mM), F- OHDA (25 mM)+Curcumin (50 µM). (G) Graphical representation of fluorescence intensity of 
GFP in dopaminergic neurons of transgenic C. elegans as quantified using Image J software; Values represent mean ± S.E (n=9). aRepresents significant difference between 
control and MCP or OHDA treated groups (P ≤ 0.001). bRepresents significant difference between OHDA and OHDA+curcumin treated groups (P ≤ 0.05).
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In the present study, we employed γ-cyclodextrin as a delivery system 
for administration of CUR to C. elegans. γCD has been demonstrated 
to be an excellent vehicle for quantitative oral administration of 
hydrophobic chemicals to C. elegans [23,31]. Using this method, oral 
supplementation with hydrophobic antioxidants such as tocotrienol, 
astaxanthin, or α-tocopherol was found to prolong the lifespan of worms 
more efficiently than conventional delivery methods. Further, this method 
limits the use of an organic solvent for the treatment of worms.

Initially, we employed the ‘nonanone repulsion assay’ which gives an 
indirect measure of the dopamine content in the worms. The response 
time of the worm to the volatile repellent nonanone is an indicator of the 
DA levels. Worms with higher DA content responds early by moving back, 
and the worm with decreased DA content takes longer time to respond 
towards nonanone [34,42]. It has been clearly demonstrated that dopamine 
signaling is required for the enhancement of 2-nonanone avoidance [43]. 
We employed this parameter to select one effective concentration of CUR 
for studying the protective efficacy. Our repulsion assay showed that CUR 
offered nearly equal protection at the three tested concentrations. We 
selected 50 µM CUR for all the further assays.

Previous studies have reported that both 6-OHDA and MCP 
cause a significant decrease in the mobility of worms [44]. The 
model neurotoxin, 6-OHDA has been reported to cause shrinkage 
of DAergic cells, nuclear condensation and DNA fragmentation 
(apoptotic characteristics) in vitro [45]. In the present study, CUR 
alone treatment did not cause any appreciable effect on the locomotory 
behavior in worms. However, we observed a significant decrease in 
the movement (in terms of body bends) among worms exposed to 
neurotoxins (6-OHDA: 64% and MCP: 52%). A variety of behaviors 
has been associated with dopamine in C. elegans including inhibition 
of locomotion, modulation of crawling speed with response to food 
[46] and controlling of turning frequency [47]. Numerous studies
have reported the beneficial effects of CUR the active principle of
turmeric, in several neurological disorders [48]. CUR possesses a
variety of biological and pharmacological activities which range from
antioxidant property, anti-inflammatory, antimicrobial and anti-
carcinogenic [49,50]. Its potential against neurodegenerative disease
is well established [21]. The increased mobility induced by CUR
treatment among worms co-exposed to both neurotoxins correlates
with amelioration of degeneration in dopaminergic neurons.

In the present model, we observed that exposure of worms (L4) 
to sublethal concentrations of 6-OHDA and MCP for 24 h resulted in 
decreased reproductive capability as revealed by reduced (25-31%) brood 
size. A similar reduction in brood size was demonstrable in C. elegans 
exposed to DDVP [37] and in Daphnia exposed to other toxicants such 
as diazinon and fenitrothion [51]. Decrease in brood size is related to 
neurodegeneration. CUR treatment provided a significant increase in 
the brood size, among neurotoxin exposed worms. However, the precise 
mechanisms underlying this protective effects merit further investigation. 
Further, we also found an increase in mean life span among worms treated 
with CUR alone and also among co-exposed to neurotoxicants (MCP-
4d; 6-OHDA- 6d) clearly suggesting its potential to enhance survival. A 
recent study showed that exposure of Drosophila to CUR resulted in a 
significant reduction in the oxidative stress and apoptosis, and increase 
the lifespan of PD model flies [52]. Our results corroborate with these 
findings on the potential of CUR to promote survival. CUR is powerful 
antioxidant and has the power to mitigate age-associated cellular damage 
induced by production of reactive oxygen species [53]. Evidence from 
several animal models has shown that CUR improves health span by 
preventing or delaying the onset of various neurodegenerative diseases 
[54]. The transcription factor SKN-1 in C. elegans which is involved in the 

extension of longevity is the orthologue to mammalian Nrf proteins which 
induce phase2 detoxification responses that defend against oxidative stress 
[55,56]. We speculate that similar mechanisms may be responsible for the 
observed extension of longevity under conditions of neurotoxin exposure.

AChE is an enzyme that modulates the amount of ACh, the 
neurotransmitter at neuronal junctions. AChE acts to hydrolyze 
acetylcholine released in synaptic clefts, thus ensuring that signalling 
is rapidly terminated [57]. Acetylcholine (ACh) is an excitatory 
transmitter at the neuromuscular junctions of nematodes [58], and 
more than one-third of the cells in the C. elegans nervous system are 
known to release acetylcholine. Further, cholinergic transmission 
is suggested to be involved directly or indirectly, in many C. elegans 
behaviors, including locomotion, egg laying, feeding and mating 
[59,60]. The cellular and behavioral consequences of AChE inhibition 
have been evaluated in terms of egg-laying in C. elegans [61]. MCP, 
being a neurotoxic OPI is known to inhibit AChE activity. In the 
present study, as expected, MCP markedly inhibited AChE activity 
in the worms. There are, however, very limited reports on the effect 
of OHDA on AChE activity in mammals. Following a 6-hydrox-
ydopamine lesion of the rat nigrostriatal pathway, the spontaneous 
release of AChE was found to be reduced, in both the caudate nucleus 
and substantia nigra. In both structures, a marked reduction in the 
release of acetylcholinesterase and nonspecific cholinesterase was 
reported [62]. It has been reported that there was a tight correlation 
between cognitive impairment in PD and cholinergic deficit [63]. 
However, there are no reports to the best of our knowledge on the 
effect of OHDA on AChE activity in C. elegans. Therefore, we also 
determined the activity of AChE, an indirect indicator to evaluate 
the cholinergic system. We observed a marked reduction in AChE 
activity in worms exposed to OHDA. In the present model CUR, alone 
treatment did not appreciably inhibit acetylcholinesterase (AChE) in 
the worms. However, it significantly restored the AChE activity levels 
in worms exposed to both the neurotoxins. This could result in the 
limiting persistence of acetylcholine in cholinergic synapses leading to 
repetitive stimulation of muscarinic and nicotinic receptors in target 
tissues. Although the precise mechanism/s by which CUR treatment 
partially restored the AChE activity in the co-exposure paradigm is not 
clear from the study, this is consistent with the observed improvement 
in the locomotion rate among the neurotoxin exposed worms.

In the present model, CUR treatment did not affect the DA levels 
in worms. However, it significantly restored the DA content in the 
worms exposed to the neurotoxins suggesting its specific effect on DA 
metabolism and its potential to rescue dopaminergic neurodegeneration 
induced by 6-OHDA and MCP. Our findings in the transgenic worms 
apparently support this property of CUR. It would be interesting to 
conduct further mechanistic studies (dose and time -response) so as to 
confirm the neuroprotective efficacy of the hydrophilic form of CUR in 
completely alleviating the neurodegeneration in this model.
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