conferenceseries.com

Wafaa Ramadan et al., J Neurol Neurophysiol 2017, 8:6(Suppl)
DOI: 10.4172/2155-9562-C1-059

15th EUROPEAN NEUROLOGY CONGRESS

August 29-31, 2017 | London, UK

Confirming the recessive inheritance of SCN1B mutations in developmental epileptic encephalopathy

Wafaa Ramadan¹, Nisha Patel¹, Shamsa Anazi¹, Amal Y Kentab², Fahad A Bashiri², Muddathir H Hamad², Lamya Jad³, Mustafa A Salih², Hessa Alsaif¹, Mais Hashem¹, Eissa Faqeih³, Hanan E Shamseddin¹ and Fowzan S Alkuraya^{1,4}

¹King Faisal Specialist Hospital and Research Center, Saudi Arabia

²King Saud University, Saudi Arabia

³King Fahad Medical City, Saudi Arabia

⁴Alfaisal University, Saudi Arabia

Dominant SCN1B (Sodium channel subunit beta-1) mutations are known to cause several epilepsy syndromes in humans. Only two epilepsy patients to date have been reported to have recessive mutations in SCN1B as the likely cause of their phenotype. Here, we confirm the recessive inheritance of two novel SCN1B mutations in five children from three families with developmental epileptic encephalopathy. The "negative" clinical exome in one of these families highlight the need to consider recessive mutations in the interpretation of variants in typically dominant genes.

Biography

Wafaa Ramadan has completed her MBBS this June from AlFaisal University, Riyadh, KSA.

waffa.mnr@gmail.com

Notes: