Ultrasensitive fluorogenic detection of miR-144 with hybridization chain reaction and silver nanoclusters

Wong Zheng Wei; New Siu Yee

School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor

Copyright: 2021 Zheng Wei W. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Problem statement: MicroRNAs (miRs) are short singlestranded RNAs that regulate the pathophysiological processes in the body. On the onset of nasopharyngeal cancer, miR-144 is commonly dysregulated, which makes it a potential biomarker to improve current cancer diagnostics. This research proposes the development of a highly sensitive fluorescence biosensing system for the detection of miR-144 based on target-triggered isothermal hybridization chain reaction (HCR) and label-free fluorogenic silver nanoclusters (AgNCs).

Methodology: The DNA hairpins for HCR are designed to specifically recognise miR-144, and host the AgNCs forming site. miR-144 recognition opens these DNA hairpins at ambient conditions, to initiate a series of DNA hybridization events. This is followed by the preparation of AgNCs into the one-pot system to generate an amplified fluorescence signal.

Findings: Due to the design of the DNA hairpin monomers that promotes dual fluorescence signal output, the fluorescence biosensor exhibits ultrasensitive detection of miR-144, with a detection limit of 0.8 pM. Our proposed biosensor also displays selectivity towards the target miR-144, and is able to detect single base mismatch in the target sequence.

Conclusion: Our preliminary findings have shown promising progress in the development of a functional fluorescence nanobiosensor for miR-144. Overall, it has the potential to improve cancer diagnostics with comparable sensitivity, at a fraction of cost, time and effort required. Apart from that, this sensing platform can be developed as a universal approach for fast, sensitive and accurate detection of nucleic acid-based molecules.

Biography:

Wong Zheng Wei School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor.

Citation: Wong Zheng Wei, Ultrasensitive fluorogenic detection of miR-144 with hybridization chain reaction and silver nanoclusters, 4th International Conference on Biosensors and Bioelectronics, Paris, France, May 21-22, 2021