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Abstract 
 

Honey, besides being a nutrient has been a subject of renewed research interest in the last few 

years for its multiple medicinal values. Evidence indicates that honey can exert several 

health-beneficial effects such as gastroprotective, hepatoprotective, reproductive, 

hypoglycemic, antioxidant, antihypertensive, antibacterial, anti-fungal and anti-inflammatory 

effects. Several different surveys have been compiled on the nutritional and health aspects of 

honey. However, the nutritional value and medicinal properties of natural honey are too 

numerous to be comprehensively documented by these manuscripts. This review presents a 

synopsis of experimental studies performed in the recent years, which support honey as a 

novel antioxidant and anti-diabetic agent that might be of potential significance for the 

management of diabetes and its complications. 
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Introduction  

Natural honey (NH) has been used as food and medicine by mankind since ancient times. It 

has been reported that raw honey is the most ancient sweetener, and has been in use 

throughout the world since several million years ago.1 Natural honey (NH) is a sweet liquid 

food of high nutritional value, and immense health benefits.2,3 NH is produced by honey-bees 

as blossom honey by secreting nectars of flowers, and honeydew honey (forest honey) by 

secreting the exudates of plant sucking insects (Aphids). The use of honey is even 

encouraged for all ages and embraced by all religious and cultural beliefs. 

Honey is spoken of by all religious books, and accepted by all generations, traditions and 

civilizations, both ancient and modern. The religion of Islam recommended the use of honey 

as food and medicine, and an entire chapter called Surah al-Nahl meaning chapter of the 

Honey Bee was dedicated in the Holy Qur'an.4,5 In the book of hadith, Prophet Muhammad 

encouraged the use of honey for curative and healing purposes.6 In Christendom, there are 
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references made to the importance of bees and honey in the Bible, and these include the 

Books of Exodus, Judges, Mathew and Proverbs.7-10 Honey has been used in Ayurveda 

medicine in India for at least 4000 years. The other traditions and civilizations that have long 

embraced honey include Budhists and Jews.1,11 

For a long time in human history honey was an important source of carbohydrate and the only 

largely available sweetener until after 1800 when it was replaced by industrial sugar.1 In the 

long human tradition honey has been used not only as a nutrient but also a medicine11.  

The composition of honey is mainly sugars and water. In addition, it also contains several 

vitamins and minerals, including B vitamins. The other constituents of honey are amino 

acids, antibiotic-rich inhibine, proteins, phenol antioxidants, and micronutrients.2 The sugars 

in honey are sweeter and give more energy than artificial sweeteners, and the most abundant 

sugar in honey is fructose.2,3,12 The high nutritional profile of honey with wide range of 

nutrients encourages its use as food. Recent studies have reported enhanced body weight 

gain, bone growth and mineralisation indicating growth stimulating property of honey.13,14 

Histological studies on wounds seem to suggest that stimulation of cell growth by honey 

could also enhance healing properties of honey.14 

Type 2 diabetes mellitus (T2DM), one of the fastest-growing and the most alarming of 

chronic illnesses, is characterized by hyperglycemia, relative lack of insulin action, insulin 

resistance, and the development of diabetes specific complications in the retina, renal 

glomerulus, and peripheral nerve. Diabetes is also associated with accelerated atherosclerotic 

disease affecting arteries that supply the heart, brain, and lower extremities. In addition, 

diabetic cardiomyopathy is a major diabetic complication. Rapidly increasing prevalence of 

type 2 diabetes mellitus (T2DM) is a major cause of concomitant increase in the incidence of 

cardiovascular disease in the industrialized world. According to International Diabetes 

Federation if current trends continue, it is estimated that the number of individuals with 

diabetes will increase to over 300 million by 2025.15 

Chronic hyperglycemia, which is the primary manifestation of diabetes, is responsible for the 

microvascular complications which ultimately result in damage to several target organs such 

as the eyes, kidneys and nerves.16 While the focus of current management of DM - whether 

non-pharmacological, such as dietary modifications, exercise and weight loss or with drugs - 

is aimed at achieving optimal control of the hyperglycemic state and thus preventing or 

delaying the onset of complications, this is often difficult to achieve even with the use of 

multiple drugs.17,18 There is therefore, an unmet need for supplemental, alternative 

therapeutic modalities which might provide additional positive outcomes. In this regard, 

several studies have focused on the potentially beneficial effects that honey might provide in 

the long term management of diabetes mellitus. 

 

Oxidative stress and diabetes-associated complications 

Although the origin of diabetic complications is multifactorial, oxidative stress is considered 

to be a vital link between metabolic abnormalities, hyperglycaemia and cardiovascular 

complications. Oxidative stress is defined as an “imbalance between oxidants and 

antioxidants in favour of the oxidants, potentially leading to damage”.19 The increased 

oxidative stress observed in patients with diabetes most likely results from the overproduction 
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of mitochondrial ROS induced by hyperglycaemia. ROS are a heterogeneous population of 

molecules that include free radicals, such as superoxide (O2-), hydroxyl (OH), peroxyl 

(RO2), and hydroperoxyl (HRO2-), as well as nonradical species, as hydrogen peroxide 

(H2O2) and hydrochloric acid (HCl).20,21 

A direct relationship is known to exist between glycemic control and the severity of micro- 

and macrovascular complications, among subjects with T2DM22.Several studies have shown 

that oxidative stress is an important determinant of vascular injury in subjects withT2DM and 

that hyperglycemia is the causal link between DM and oxidative stress.23,24 Interestingly, 

studies performed in diabetic rodents found increased concentrations of superoxide (O2-) and 

hydrogen peroxide (H2O2) in the aortic wall.  

The ability of cells to scavenge excess reactive species is largely dependent on the efficiency 

of the overall antioxidant defense system.25,26 This antioxidant defense network consists of 

endogenous and exogenous antioxidants. The endogenous antioxidants comprise the 

enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and glutathione 

peroxidase (GPx) and non-enzymatic antioxidants including glutathione (GSH), vitamins C 

and E as well as small molecules.27 The exogenous antioxidants comprise the micronutrients 

and other exogenously administered antioxidants.19,25 Evidence indicates that individuals with 

chronic or degenerative diseases are more susceptible to oxidative stress due to the imbalance 

between oxidants and antioxidants.28, 29 

 

Molecular Mechanisms of Hyperglycemia-Induced Oxidative Stress 

The increased oxidative stress in patients with poorly controlled DM is predominantly due to 

hyperglycemia, which occurs through five metabolic pathways:30 increased flux of glucose 

through the polyol pathway;23 increased formation of advanced glycation end products 

(AGEs) and their receptors;31 activation of protein kinase C isoforms- β, δ, and α;32 

overactivity of hexosamine pathways,33 and a decrease of antioxidant defenses.23 The 

increased polyol flux results from the increased enzymatic conversion of glucose to 

polyalcohol sorbitol, which in turn, reduces intracellular NADPH and glutathione 

concentrations. Besides, sorbitol dehydrogenase metabolizes sorbitol to fructose, increasing 

the intracellular ratio of NADH/NAD+, that inhibits glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), which increases the concentration of triose phosphate. Increased 

concentrations of triose phosphate drive the formation of both methylglyoxal, a precursor of 

AGEs, and diacylglycerol (DAG) (through α-glycerol-3- phosphate), thereby activating 

Protein Kinase C (PKC).23 

Chronic hyperglycemia also increases the circulating concentrations of cytokines, growth 

factors, and hormones, such as endothelin-1 and angiotensin II, which activate PKC isoforms 

β and δ by binding to their cell surface receptors.34-36 PKC activation in turn, inhibits insulin-

stimulated endothelial Nitric Oxide Synthase (eNOS) expression in endothelial cells and 

decreases nitric oxide production in smooth muscle cells.37 In vascular smooth muscle cells, 

PKC also has been shown to induce the over expression of the fibrinolytic inhibitor, 

plasminogen activator inhibitor (PAI)-1, and the activation of NF-κβ.38 Over expression of 

PKC contributes to the accumulation of a microvascular matrix protein by inducing the 

expression of transforming growth factors (TGF)-β, fibronectin, and type IV collagen in both 

cultured mesangial cells and in glomeruli of diabetic rats.39 By a similar mechanism, PKC 
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contributes to cardiac fibrosis through upregulation of the expression of fibrosis-promoting 

factors, such as TGF-β and connective tissue growth factor.40 PKC also enhances vascular 

permeability by increasing the expression of vascular endothelial growth factor (VEGF).41 

The production of ROS in subjects with DM is mediated by the binding of AGEs to their 

receptors (RAGE). AGEs are formed by the excessive intracellular glucose concentration that 

occurs with hyperglycemia. Binding of AGEs to RAGE induces the generation of 

intracellular ROS and the subsequent activation of the redox sensitive transcription factor 

NF-κβ, which in turn promotes the expression of a variety of genes associated with 

atherosclerosis, including intracellular adhesion molecule-1 (ICAM-1), vascular adhesion cell 

molecule-1 (VCAM-1), monocyte chemotactic protein-1 (MCP-1), PAI-1, tissue factor, and 

VEGF.42,43 Moreover, AGEs that are present in the extracellular matrix decrease elasticity 

and quench nitric oxide, reducing endothelium dependent vasodilatation.44 Since nitric oxide 

is a mediator of the angiogenic signal of VEGF, the AGE-RAGE axis may impair the 

formation of collateral arteries after myocardial infarction.45 RAGE induction and activation 

of PKC both augment oxidative stress, which induces low-grade chronic inflammation, a 

common feature of T2DM, altering anti-oxidant defences and inducing apoptosis of 

circulating endothelial progenitor cells, thereby impeding vascular repair.46 

Hyperglycemia causes added damage to blood vessels by also inducing the hexosamine 

pathway. Under hyperglycemic conditions, increased nutrient availability is shunted into the 

hexosamine pathway. The end product of this pathway, UDP-N-acetyl glucosamine, is 

utilized as a substrate for the enzymatic glycosylation of transcription factors via O-

GlcNActransferase (OGT), which in turn regulate the expression of genes, such as PAI-1, 

TGF-α, TGF-β1, each of which is implicated in the pathogenesis of vascular complications. 

In addition, hyperglycemia, through the hexosamine pathway, impairs activation of the IR 

substrate (IRS)/phosphatidylinositol 3-kinase (PI3-K)/Aktpathway, resulting in deregulation 

of eNOS activity.47-50 

Excess superoxide also directly inhibits critical anti-atherosclerosis endothelial enzymes 

independent of activating the 5 damaging pathways implicated in metabolite-induced diabetic 

complications. Both of these enzymes (eNOS and prostacyclin synthase) are inhibited in 

diabetic patients and diabetic animals.51 Treatment of the diabetic animals with an 

SOD/catalase mimetic has been shown to prevent diabetes-induced oxidative inactivation of 

aortic prostacyclin synthase.51 Inhibition of hyperglycemia-induced ROS production in 

diabetic mice using either transgenic antioxidant enzyme expression or combinations of 

antioxidant compounds reportedly prevents the development of experimental diabetic 

retinopathy, nephropathy, neuropathy and cardiomyopathy.52-57 

Thus, the metabolic abnormalities of diabetes play a pivotal role in the development of 

diabetes related complications, both microvascular and cardiovascular by causing 

mitochondrial superoxide over production in endothelial cells of large and small vessels, as 

well as in the myocardium. (Figure 1).  

 

Animal models of diabetes mellitus 

Animal models of DM have been used extensively for screening natural and synthetic 

compounds for anti-diabetic activity as well as for investigating the pathophysiological 
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mechanisms involved in the development of diabetes and its complications. The most widely 

used experimental tool for this purpose is streptozotocin (STZ), which can induce either type 

1 or type 2 DM with appropriate dose selection.58-61 Other experimental models include the 

alloxan-induced-diabetes model, 58,62,63 high-fat-diet model60,64 and genetic models.65,66  

 

Potential effects of honey on diabetes and its complications 

Honey has been shown to exert beneficial effects on experimentally induced diabetes and its 

complications in animal models. Potentially beneficial effects have been demonstrated on 

three major components viz. a) glycemic control and lipid metabolism b) increased oxidative 

stress which could contribute to c) organ damage. Evidence for these, from experimental 

studies in animals, is discussed below.              

 

Effect of honey on glycemic control and lipid metabolism 

Pure natural honey has been reported to produce a lower glycemic response in rabbits as 

compared to sucrose or commercial honey, possibly due to added sugar in the latter.67 

Chepulis and Starkey reported a significant decrease in HbA1c levels in Sprague-Dawley rats 

fed with honey over several weeks.14 They also found a significant increase in HDL 

cholesterol in the honey fed group as compared to the sucrose-fed or sugar free diet-fed 

groups. No other differences were observed in the levels of other lipids. The weight gain in 

the honey-fed rats was similar to the sugar free-diet group and significantly less as compared 

to the sucrose-fed group. On the other hand, Erejuwa et al, reported insignificant differences 

in fasting blood glucose or body weight in honey-fed rats.68 Busserolles et al, reported 

reduced serum triglyceride levels in honey fed rats.69 Yet another study reported a reduction 

in ependymal fat and triglycerides but an increase in other (non-HDL) lipids with honey 

administration in rats.70 

While reports on the effects of honey on resting levels of blood glucose and lipids in normal 

animals appear to be equivocal, there is relatively more consistent evidence for a beneficial 

effect of honey treatment on the biochemical parameters in experimentally-induced diabetic 

animals.13,67,71 Fasanmade and Alabi reported that honey elicited significant anti-

hyperglycemic effects in alloxan-induced diabetic rats while Erejuwa et.al found similar 

effects in STZ induced diabetic rats.71-73  Furthermore, honey supplementation appears to 

augment the anti-hyperglycemic effect of standard anti-diabetic drugs in STZ-induced 

diabetic rats.74,75 Increase in HDL cholesterol and a decrease in triglycerides and VLDL has 

been reported in STZ-induced diabetic rats following administration of honey alone or in 

combination with metformin.76 

The exact mechanism by which honey might elicit these positive effects on blood glucose and 

lipid levels is not clear. However based on several studies the following possibilities merit 

consideration: 

 

Effects of fructose content in honey 
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One of the potential mechanisms for the antidiabetic effects of honey could be related to the 

fructose content in honey. There is evidence that fructose tends to lower blood glucose levels 

in rodent models of diabetes.77,78 Mechanisms responsible for this may include a prolongation 

of gastric emptying time,79,80 reduced rate of intestinal absorption81 and reduced food 

intake.82,83  Additionally, fructose has also been shown to stimulate glucokinase in 

hepatocytes which plays a significant role in the uptake and storage of glucose (as glycogen) 

by the liver.84 Watford demonstrated that infusion of small amounts of fructose into the 

duodenum increased hepatic uptake and storage and reduced peripheral glucose and insulin 

levels in dogs.85 Interestingly, glucose which is present along with fructose in honeys has 

been shown to synergistically enhance the absorption of fructose and may thus promote its 

hepatic actions through its enhanced delivery to the liver.86,87 

 

Effects of honey on liver 

The liver has been termed as one of the ‘Three Musketeers’ in the control of glycemia; the 

other two being the pancreas and skeletal muscle.88 Fructose which is present in significant 

proportions in most honeys has been shown to enhance glucokinase and glycogen synthase 

activities  and inhibit phosphorylase activity in the liver.91,84,89,90 The net effects of these 

actions would tend to result in increased hepatic glucose phosphorylation, increased synthesis 

and decreased breakdown of glycogen in the liver.  The presence of glucose and fructose 

together in honey have been suggested to provide a complimentary effect on glucose and 

glycogen in the liver.92,93 However, only low concentrations of fructose have been found to 

improve glucose tolerance and hepatic glucose metabolism while higher concentrations have 

an opposite effect.94 Although, there is considerable evidence to suggest that consumption of 

high amounts of fructose may result in weight gain and other adverse metabolic 

consequences such as impaired lipid metabolism, insulin resistance and increased visceral fat 

deposition,83,95-98 this concern is more in relation to its excessive consumption associated with 

high-fructose drinks and foods which are likely to yield higher concentrations of fructose 

delivered to the liver. 99,100 

 

Effects of honey on hormones regulating satiety, food intake and body weight 

A few experimental studies have documented the effects of honey on hormones that regulate 

satiety and calorie intake and expenditure.  Honey fed rats have been reported to exhibit 

lower levels of leptin compared to sucrose fed rats.70 Like so many of the effects described 

above, a role of fructose has also been suggested for the reduction of leptin secretion and an 

attenuation of postprandial suppression of ghrelin.101,102 However the effects of honey 

administration on body weight are equivocal with some studies reporting reduced weight 

gain.13, 70,103 

Honey, contains several other constituents, 3,104,105 in addition to glucose and fructose and 

these bioactive constituents might  also contribute to its overall effects on glycemic control 

which has been reported in several experimental studies in both non-diabetic and diabetic 

animals.3,13,67,71-73 
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Effects of honey on diabetic complications 

The metabolic derangement in diabetes mellitus is not confined to hyperglycemia and 

impaired utilization of glucose by the tissues but it also sets in motion a train of other 

metabolic abnormalities which result in progressive complications including abnormalities of 

microcirculation, atherosclerosis and end organ damage such as retinopathy, nephropathy and 

neuropathy. While some of these damaging consequences can be minimized with anti-

diabetic medication others continue to progress despite restoration of glycemic control.106-108 

Several mechanisms have been proposed, however mitochondrial oxidative stress appears to 

be the primary determinant for the deleterious effects of hyperglycemia which result in tissue 

and organ damage.51,109 Further, oxidative stress has also been shown to reduce glucose 

uptake and storage and to promote insulin resistance.110-114 Hyperglycemia itself exerts toxic 

effects on pancreatic β-cells through increased oxidative stress leading to increased apoptosis 

and reduced insulin content.115-118 There is evidence to suggest that honey might provide 

protection against diabetic complications via its antioxidant and organ protective effects.  

 

Anti-oxidant and organ protective-effects of honey 

Antioxidants have been shown to improve insulin levels and reduce insulin resistance in 

diabetes mellitus.119-123 There are a number of reports which show that honey possesses free 

radical scavenging properties.117,124-126 Since oxidative stress is believed to impact the health 

and insulin producing ability of  pancreatic β cells as also to promote insulin resistance  (see 

above) it is reasonable to expect that  honey supplementation will provide a rescue for the 

stressed  insulin producing pancreatic cells and also combat insulin resistance. 

Oxidative and non-oxidative metabolic stress generated in the hyperglycemic state might also 

play a potential role in damaging other organs like the kidneys, heart, nerves and liver. 
106,107,127-130 There is experimental evidence to support an organ protective effect of honey 

against injuries induced by chemical insults which are presumed to result as a consequence of 

increased oxidative stress.131-134  The fact that honey supplementation has also been found to 

ameliorate oxidative stress and exert a protective effect against organ damage in 

experimentally induced diabetes in animals68,72-75,135,136 would tend to indicate that it could 

potentially ameliorate the progressive end-organ damage that results from of sustained 

hyperglycemia in diabetes mellitus. Moreover, since this protective effect was also apparent 

in the pancreatic β cells,68,74,136 it might also slow down the progress of the diabetic state 

itself. 

 

Clinical studies 

In contrast to the ample evidence from experimental studies which suggests potentially 

beneficial effects that honey supplementation might offer for the control of diabetes mellitus 

and its complications, the data available from studies in normal human subjects or diabetic 

patients is rather sparse. There are some sporadic reports of effects (Table 1) which tend to 

indicate a potential positive impact of honey supplementation on glycemic control and 

progression of diabetes mellitus. The favourable effects are reported in both diabetic and non-

diabetic subjects.137-146 Besides, honey is also reported to reduce body weight ameliorate lipid 
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metabolism in diabetic and non-diabetic subjects.138,144,147,149,150 In addition, Gheldof et al 

have shown an increase in serum antioxidant capacity with honey consumption in healthy 

men.152 Since oxidative stress has been implicated both in the development of diabetes as 

well as its complications, the antioxidant effects of the constituents of honey might also 

afford an organ-protective effect which could limit the progression of diabetes and reduce 

complications.  

 

Conclusion 

There is considerable evidence from experimental studies that honey may provide benefits in 

the management of diabetes mellitus. These potential benefits could be both in terms of better 

control of the hyperglycemic state per se, as well as for limiting other metabolic 

derangements and reduction of deleterious effects on organs which produce diabetic 

complications. However, most of the studies on experimental animal models of diabetes have 

employed chemically (Streptozotocin or Alloxan) induced diabetes which may not truly 

reflect the development of diabetes in humans specially Type 2. It is therefore necessary that 

studies are carried out in other animal models e.g. high-fat diet fed obese animals or 

genetically prone animals which might correlate more closely with the human type 2 

diabetes. Also, the promising effects seen in experimental studies need to be further 

investigated in well designed, controlled clinical studies to determine whether these can be 

duplicated in actual clinical situations. Additionally, it must also be considered that the major 

constituents of honey are sugars and consumption of high doses on a regular basis could 

possibly nullify or even reverse any beneficial effects. Thus optimal doses would have to be 

determined. Based on the experimental data from several sources, it may be concluded that 

honey has potential benefits in the management of diabetes and its complications and there is 

a strong case for pursuing this further.  

 

Conflict of interest: None declared. 
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Figure 1: Mechanism of hyperglycemia induced diabetic complications 
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Table 1: Beneficial effects of honey in human subjects 

 

Effect on In non-diabetic subjects In diabetic subjects 

 

Glycemia 

     Post-prandial  glycemic  

     response 

      

    Blood sugar level 

 

 

Body weight  and fat 

 

 

 

Insulin levels 

 

 

 

 

Lipid metabolism 

 

 

 

 

 

Appetite  regulating 

hormones 

 

 

 

Oxidative stress 

 

 

 

Reduced 137-141 

 

 

 

 

 

Reduced in overweight 

/obese subjects138 

 

 

Lower increase with honey 

compared to glucose-

sucrose147,148 

 

 

Decrease in TC, LDL and 

CRP;  increase in HDL138,147 

 

Decrease in elevated levels 

of TGs138,150 

 

Delayed post-prandial 

ghrelin release and increase 

in peptide YY response in 

normal subjects151 

 

Increased serum antioxidant 

capacity152 

 

 

 

Reduced 139,141,142 

 

 

Decrease in type 2143-145 and 

type 1 diabetes146 

 

Reduced in type 2 diabetic 

patients144 

 

 

Greater increase with honey           

compared to sucrose147 

Decreased insulin resistance 
149 

 

Decrease in TGs144,149 

 

 

 


