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              ABSTRACT

Gold nanolayers covered with snow-like nanoparticles were firstly synthesized by the sonoelectrodeposition method at a 
high negative potential. The nanostructure was then applied to prepare a highly sensitive nonenzymatic sensor for hydrogen 
peroxide. The catalytic activity and sensitivity of the gold nanostructure toward the electroreduction of hydrogen peroxide 
was excellent without surface fouling and deterioration effects. The current related to the reduction of hydrogen peroxide 
rapidly and linearly depended on the concentration with a sensitivity of 0.24 A mol-1 dm3 cm-2 and a detection limit of 7.9 
mol dm-3. The present hydrogen peroxide sensor was fabricated by a simple preparation method without using any specific 
enzyme or reagent, with an excellent catalytic activity, high sensitivity and selectivity, long-term stability, and antifouling 
property.
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  1. INTRODUCTION
rydrogen peroxide is an important intermediate 
compound in many biological reactions, and is 
employed as an antiseptic or disinfectant for 

medical and packaging purposes. It is widely used in 
industrial processes as a bleaching agent for cellulose, 
papers and fibers, in waste treatment as a deodorant, and in 
the semiconductor fabrication as a cleaning agent (1, 2). 
Therefore, development of sensitive and selective methods 
for hydrogen peroxide determination is important in food, 
and pharmaceutical, biomedical, clinical, industrial and 
environmental analyses (3-6). As for the hydrogen 
peroxide determination, enzymatic and protein-based 
biosensors have the disadvantages of instability of the 
enzymes or proteins, complex immobilization process and 
high costs. On the other hand, direct or mediated 
electrooxidation- or electroreduction-based sensors without 
using enzyme and protein have the advantages of 
simplicity, high sensitivity, fast response time, low cost 
and convenient operation. To attain these advantages, 
hydrogen peroxide electrochemical sensors have been 
fabricated using novel nanostructures of metals, metal-

based composites, metal oxides, metal hexacyanoferrates 
and conducting polymers (7-11).
Nanostructured materials represent size- and shape-
dependent properties, including chemical (re)activity 
resulting in the fabrication of highly sensitive 
electrochemical sensors (12). Therefore, the development 
of synthesis routes to prepare novel nanostructured 
materials with different sizes and shapes is highly desirable. 
Different nanostructures of gold have been applied to 
fabricate electrochemical sensors and biosensors including 
nanoparticles (13), nanowires (14), nanocomposite (15), 
nanorod (16), nanochains (17), and nanodots (18). Up to 
now, different electrochemical hydrogen peroxide sensors 
have also been fabricated based on gold nanostructures (11, 
13, 14, 17, 18). However, due to the size and shape 
dependent properties of the gold nanostructures, there is a 
plenty room to fabricate nonenzymatic hydrogen peroxide 
sensors based on novel gold nanostructures. In this work, 
an amperometric hydrogen peroxide sensor was presented 
using gold nanolayers covered with snow-like 
nanoparticles.
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2. MATERIALS AND METHODS
All chemicals used in this work were reagent grade from 
Merck or Sigma products and used without further 
purifications. A 100 mmol dm-3 phosphate buffer solution 
(PBS), pH=7.4 was prepared using NaH2PO4 and Na2HPO4. 
Doubly distilled water was used throughout the study. 
Electrochemical studies were performed in a conventional 
three-electrode cell powered by a -Autolab 
potentiostat/galvanostat, type III, FRA2 (The Netherlands) 
run by a computer through GPES 4.9 software. An 
Ag/AgCl/3 mol dm-3 KCl and a glassy carbon wire were 
used as the reference and counter electrodes, respectively. 
The working electrode was a gold disk (Au) electrode of 2 
mm diameter modified by gold nanolayers covered by 
snow-like nanoparticles (nAu). Studies on the 
electrocatalytic reduction and determination of hydrogen 
peroxide were performed in PBS as the running electrolyte. 
PBS was used as the running electrolyte to mimic the 
physiological medium.
In order to prepare the modified (Au/nAu) electrode, the 
Au electrode was firstly polished on sand papers, and then 
on a polishing pad with 50 nm-alumina powder lubricated 
by glycerin. Polishing was continued to attain a mirror-like 
surface. The electrode was then cleaned by immersion in a 
1:3 water/ethanol mixture and ultrasonication for 5 min in 
an ultrasound bath. The electrode was further 
electropolished by immersion in a 500 mmol L-1 H2SO4 
solution and applying cyclic potentials in the range of 
cathodic and anodic edges of the electrolyte for 25 
consecutive cycles. The Au electrode was then placed in 
the cell containing 5 mmol dm-3 HAuCl4 + 0.5 mol dm-3 
KCl. nAu was sonoelectrodeposited at a potential of -1800 

mV for a duration of 300 s, while during the 
electrodeposition, the synthesis solution and the Au 
electrode surface were irradiated by ultrasound waves of 
45-W power. Au/nAu electrode was then rinsed thoroughly 
with distilled water. In order to obtain information about 
the morphology and size of the electrodeposited gold 
nanostructure, field emission scanning electron microscopy 
(FESEM) was performed by Zeiss, Sigma-IGMA/VP 
(Germany). Amperometric measurements for hydrogen 
peroxide quantitation were performed at -200 mV in a 
magnet-stirring solution wherein the solution was rapidly 
homogenized after each hydrogen peroxide injection. To 
investigate the capability of the Au/nAu electrode to detect 
hydrogen peroxide in real samples, two river water 
samples taken from different local rivers were analyzed. 
The water samples were put intact for two days to settle. 
After that, the amperometric responses of the Au/nAu 
electrode were measured by hydrogen peroxide addition of 
known concentrations to the samples. All studies were 
carried out at room temperature.

3. RESULTS AND DISCUSSION
Figure 1 represents a FESEM image of the 
electrodeposited gold surface. The nanostructure has a 
complex morphology, and at low magnification, comprises 
clung nanolayers which are partly covered by snow-like 
nanoparticles. Electrodeposition of gold nanolayers 
covered with snow-like nanoparticles occurred under 
nonequilibrium conditions due to the correlations between 
the newly deposited species and their neighboring position 
during the mass transport process (19). In the formation of 
this structure, both irradiation of ultrasound and hydrogen 
co-evolution play key roles, and elimination of ultrasound 
irradiation, or application of less negative potentials lead to 
formation of other gold structures.

Figure 1. A FESEM image of the electrodeposited gold surface
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Figure 2 shows cyclic voltammograms of Au and Au/nAu 
electrodes recorded in PBS in the absence and presence of 
1.0 mmol dm-3 hydrogen peroxide. The reduction of 
hydrogen peroxide on the Au/nAu electrode occurred at 
lower potentials with a higher rate, compared to the Au 
electrode. Both aspects are highly important for 
development of a determination method of hydrogen 
peroxide with high sensitivity without interference from 
other substances. In order to compare the surface areas of 
the Au and Au/nAu electrodes and their roughness factors, 
cyclic voltammograms of the Au/nAu electrode at different 

potential sweep rates were recorded in a solution of KCl 
(0.5 mol dm-3) containing K4[Fe(CN)6] (0.5 mmol dm-3), as 
a redox probe. The real surface area was obtained from the 
Randles-Sevcik equation (20) and the value of 7.60×10-6 
cm s-1 for the diffusion coefficient of [Fe(CN)6]4- (21) 
(Supplementary material S1). Based on the results, the real 
surface area of the Au and Au/nAu electrodes was obtained 
as 0.058 and 0.73 cm2, respectively. Regarding the 
geometric surface area of the electrodes (equal to 0.031 
cm2), the roughness factors were obtained as 1.86 and 
23.19 for Au and Au/nAu electrodes, respectively. 

Figure 2. Cyclic voltammograms of Au and Au/nAu electrodes recorded in PBS in the absence and presence of 1.0 mmol dm-3 hydrogen peroxide. 
The potential sweep rate was 50 mV s-1

On the other hand, the potential of the hydrogen peroxide 
electroreduction in the voltammograms of Fig. 2 on the 
Au/nAu electrode is more positive, and the corresponding 
current at the potential of -170 mV (peak potential of 
hydrogen peroxide electroreduction on the Au/nAu 
electrode surface) is 58 times higher, compared to the Au 
electrode. While the active surface area of the Au/nAu 
electrode is about 12.6 times higher than the Au electrode. 
The results indicate that hydrogen peroxide is 
electroreduced on the Au/nAu electrode from both kinetics 
and thermodynamics points of views. The acceleration of 
electroreduction of hydrogen peroxide by the Au/nAu 
electrode can be related to the change in the valence band 

density of states of gold nanostructure (22) which 
comprises different reactive facets (23). In addition, mass 
transport regime can be altered (24) by the high coverage 
of gold clusters. It can also be added that the (re)activity of 
facets and steps in the nanostructures is different with 
smooth surfaces (25), and it can alter the reaction kinetics. 
In order to develop a sensor for detection of hydrogen 
peroxide based on the Au/nAu electrode, the amperometry 
technique was employed. Figure 3 shows typical 
amperometric signals during the successive addition of 
hydrogen peroxide to PBS at a working potential of -200 
mV. Gentle magnetic stirring for a few seconds was 
needed to homogenize the solution after each addition. 
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Figure 3. Typical amperometric signals during the successive addition of hydrogen peroxide to PBS at the potential of -200 mV. Inset: The 
corresponding calibration curve 

The Au/nAu electrode responded rapidly and linearly to 
the hydrogen peroxide concentration (Figure 3, inset). The 
limits of detection (LOD) and quantitation (LOQ) of the 
method were calculated as 3SD/m and 10SD/m, 
respectively, where SD is the standard deviation of the 
blank signal and m is the slope of the calibration curve (26). 
The determined parameters for the calibration curve of 
hydrogen peroxide were obtained as LOD=7.9 mol dm-3, 
LOQ=26.3 mol dm-3, RSD (relative SD)=4.25%, 
sensitivity=0.24 A mol-1 dm3 cm-2, and a linear range of 
50-800 mol dm-3. A comparison of some different 

hydrogen peroxide sensors is presented in Table 1, 
showing that the present amperometric sensor based on 
gold nanolayers covered with snow-like nanoparticles has 
better or comparable characteristics. Long-term 
amperometric response of the Au/nAu electrode to 50 
µmol dm-3 hydrogen peroxide for 20 min is presented in 
Figure 4 A. The response remained stable during the 
measurement (<5% fluctuation in the current). This 
indicates that no fouling or blocking of the electrode 
surface occurred, and the electrode showed high stability 
and strong mediation properties for amperometric 
measurements of hydrogen peroxide.

Table 1. Comparison of some different hydrogen peroxide sensors
Electrode Potential / 

V
Sensitivity /

A mol-1 dm3 cm-2
LOD / mol dm-3 Linear range / mol dm-3 Reference

Ag NPs -0.3 b - 33.9 100-180000 (27)
Fe3O4-Ag -0.5 b 0.012 1.2 1.2-3500 (28)
Ppy-Cu/Au -0.3 a - 2.3 7.0-4300 (29)
HRP-sol gel -0.25b - 12.89 0.013-10.6 (30)
Ag-SWCNTs -0.3 a 1.092 2.76 16-18000 (31)
Ag NPs/PoPD -0.5 a - 1.5 6.0-67300 (32)
Pt Nanoflower -0.2 b - 60 100-900 (33)
Pt-carbon paste 0.8 b - 5 - (34)
PtPd/MWCNTs 0.25 a - 1.2 2.5-125 (35)
Pt/MWCNTs-PANI -0.25 a - 2.0 7.0-2500 (36)
Pt NPs-MWCNTCs -0.4 b - 1.23 5-2000 (37)
Se/Pt nanocomposites 0.0 b - 3.1 0.01-15 (38)
Pt NPs-PPy nanowires -0.3 a - 1.2 3.5-9900 (39)
Macroporous Au/Pt NPs 0.1 b 0.264 50 - (40)
Graphene/Au NPs/chitosan -0.2 b - - 0.2-4.2 (41)
Pt NPs-micro carbon pillars -0.4 b 1.28-1.75 9.6-17.7 to 7000 (42)
Platinum hierarchical nanoflowers 0.21 b 1.39 1.05 10-400 (14)
Au nanolayers covered with snow-like 
nanoparticles

-0.2 b 0.24 7.9 50-800 This work

a Potential versus SCE.
b potential versus Ag/AgCl

Abbreviations:
CNT: carbon nanotube
NPs: Nanoparticles
HRP: Horseradish peroxidase

SWCNT: Single wall carbon nanotube
PoPD: Poly(o-phenylene diamine)
MWCNTs: Multi wall carbon nanotube
PANI: Polyaniline
PPy: Polypyrrole
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In order to inspect the selectivity of the Au/nAu electrode, 
the interference effects of some common biological 
interferences of dopamine, ascorbic acid, glucose and uric 
acid were evaluated and are shown in Figure 4 B. No 
electrochemical interference was observed for these 
compounds due to electrocatalytic nature of the gold 
nanostructure toward the electroreduction of hydrogen 
peroxide at the applied potential. In order to inspect the 
capability of the Au/nAu electrode in detection of 
hydrogen peroxide in real samples, river samples were 
analyzed by amperometry. The determined parameters for 

the calibration curve of hydrogen peroxide in a typical 
river water sample are as LOD=10.2 mol dm-3, 
LOQ=34.1 mol dm-3, RSD=4.83%, sensitivity=0.20 A 
mol-1 dm3 cm-2, and a linear range of 50-800 mol dm-3. In 
addition, the recovery results of hydrogen peroxide 
determination in two river samples were obtained as 
98.85% and 98.11%. Based on the results, the electrode 
demonstrated an excellent sensing capability in detecting 
hydrogen peroxide in real samples.

Figure 4. (A) Lon-term amperometric response of the Au/nAu electrode to 50 µmol dm-3 hydrogen peroxide for 20 min (B) Typical amperometric 
signals for 50 µmol dm-3 hydrogen peroxide, dopamine, ascorbic acid, glucose and uric acid to PBS. (UA: Uric acid, DA: Dopamine, AA: Ascorbic 

acid). The potential was -200 mV.

In order to inspect the durability and long-term stability of 
the Au/nAu electrode, amperometric measurements were 
performed in five successive days, and it was found that 
the currents changed slightly (<5%). In addition, the 
electrode was stored in distilled water when not in use and 
retained its activity for at least five weeks.

4. CONCLUSION 
A sonoelectrodeposition method at a highly negative 
potential was developed for the synthesis of gold 
nanolayers covered with snow-like nanoparticles. It seems 
that hydrogen co-evolution played a major role in the 
synthesis of this nanostructure, and the procedure might be 
applied to the synthesis of other noble metals. This gold 
nanostructure showed an enhanced electrocatalytic activity 
towards the reduction of hydrogen peroxide without 

interfering effect. The sensor showed remarkable 
electrocatalytic activity, stable response and high 
sensitivity toward hydrogen peroxide.
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