

Immune Cells: Function, Diversity, and Therapies

Sarah Ali

Department of Immunology, University of Karachi, Karachi, Pakistan

Corresponding Authors*

Sarah Ali

Department of Immunology, University of Karachi, Karachi, Pakistan
E-mail: sarah.ali@uok.edu.pk

Copyright: 2025 Sarah Ali. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received: 01-Jul-2025; **Accepted:** 08-Aug-2025; **Published:** 08-Aug-2025

Introduction

The intricate balance of the human immune system is fundamental to health, orchestrating defense against pathogens, maintaining tolerance, and influencing disease progression. Recent advances have significantly deepened our understanding of immune cell functions, their plasticity, and their therapeutic manipulation across various pathological contexts.

Adoptive T-cell therapies (ACTs), including CAR-T and TCR-T cell approaches, represent a burgeoning frontier in the treatment of solid tumors [1].

These innovative strategies confront substantial challenges such as immune-suppressive microenvironments and antigen heterogeneity within tumors, driving ongoing research to enhance their efficacy and broaden their clinical utility.

In parallel, regulatory T cells (Tregs) are recognized as central figures in immune tolerance, performing crucial roles in preventing autoimmune diseases [2].

Their suppressive functions, mediated through cytokine production, metabolic disruption, and direct cell-cell contact, offer compelling targets for therapeutic intervention in autoimmune disorders.

The dynamic nature of myeloid cells, encompassing macrophages, neutrophils, and dendritic cells, underscores their critical importance in both inflammation and cancer [3].

These cells demonstrate remarkable heterogeneity and plasticity, adapting their phenotypes and functions in response to microenvironmental cues, thus acting as pivotal regulators of immune responses and therapeutic outcomes. Specifically, macrophages exhibit polarization into distinct functional phenotypes, like M1 or M2, which profoundly impact inflammatory diseases, tissue repair, and anti-tumor immunity [7].

Beyond systemic immunity, the specialized functions of innate and adaptive immune cells are critical for maintaining intestinal homeostasis and host defense against pathogens [4].

Their complex interactions with the gut microbiota and dietary factors are instrumental in shaping mucosal immunity and preventing inflammatory bowel diseases.

Technological advancements like CRISPR/Cas9 gene editing are revolutionizing the field of immunotherapy [5].

This precise genomic modification technology is being applied to human immune cells, notably T cells and NK cells, to develop advanced cancer immunotherapies, aiming to enhance anti-tumor efficacy, overcome resistance, and improve safety profiles.

The concept of immune memory is foundational to long-lasting protection conferred by vaccination [6].

This involves the formation and maintenance of memory B cells, T cells, and innate lymphoid cells, which enable rapid and effective responses upon re-exposure to pathogens, informing strategies to optimize vaccine-induced immunity.

Dendritic cells (DCs), as professional antigen-presenting cells, comprise diverse subsets, each with specialized roles in initiating and shaping immune responses [8].

Their ability to present antigens and activate T cells is vital, influencing the course of infections, autoimmunity, and cancer, highlighting their therapeutic potential.

Cytokine signaling plays an indispensable role in the development, differentiation, and effector functions of T cells [9].

Through specific receptor interactions and downstream pathways, cytokines orchestrate T cell maturation in the thymus and guide their specialization in peripheral immune responses, profoundly modulating immunity and inflammation.

Finally, inflammasomes, as multi-protein complexes, are crucial initiators of innate immune responses and inflammatory processes [10].

Understanding their activation mechanisms and roles in pathogen defense and sterile inflammation holds significant implications for a wide range of diseases, from infections to autoimmune disorders and cancer, with active research into therapeutic targeting. Together, these studies paint a comprehensive picture of immunology's current state, from fundamental mechanisms to cutting-edge therapeutic applications.

Description

The field of immunology is actively unraveling the complex roles of various immune cell types and their implications for health and disease. Recent research highlights significant strides in understanding these intricate mechanisms and developing novel therapeutic strategies. For instance, adoptive T-cell therapies (ACTs), which include CAR-T and TCR-T cell approaches, are at the forefront of cancer treatment, particularly for solid tumors. These therapies aim to overcome formidable challenges such as the immune-suppressive microenvironments within tumors and the heterogeneity of tumor antigens, continually seeking to enhance their effectiveness and broaden their clinical applications [1]. The insights gained here are crucial for pushing the boundaries of oncology.

Regulatory T cells (Tregs) are indispensable for maintaining immune tolerance and actively preventing the onset of autoimmune diseases. Their diverse suppressive functions, which involve mechanisms like cytokine production, metabolic disruption, and direct cell-cell contact, are extensively studied. This understanding is paving the way for targeted therapeutic strategies that manipulate Treg activity to address autoimmune disorders, offering a new dimension in managing these chronic conditions [2]. The precision in their function makes them a key area of investigation.

Myeloid cells, a broad category including macrophages, neutrophils, and dendritic cells, exhibit remarkable heterogeneity and plasticity. These cells are not static; they dynamically adapt their functions and phenotypes in response to specific microenvironmental cues, acting as crucial regulators of immune responses, disease progression, and therapeutic outcomes in both inflammatory conditions and cancer [3]. A specific example of this adaptability is macrophage polarization, where macrophages adopt distinct M1 or M2 functional phenotypes. This polarization significantly influences the pathogenesis of various inflammatory diseases and cancers, affecting tissue repair, immune suppression, and anti-tumor immunity, thereby providing potential targets for therapeutic modulation [7].

The immune system also plays a specialized and critical role in maintaining intestinal homeostasis and host defense against various pathogens. Different immune cell types, both innate and adaptive, possess specialized functions within the gut, interacting intricately with the microbiota and dietary factors. These interactions are fundamental in shaping mucosal immunity and preventing inflammatory bowel diseases, illustrating the profound connection between the immune system, diet, and gut health [4].

Advancements in gene editing technologies, such as CRISPR/Cas9, are transforming how we approach cancer immunotherapy. This technology is being precisely applied to human immune cells, notably T cells and NK cells, to engineer advanced immunotherapies. The goal is to enhance anti-tumor efficacy, overcome existing resistance mechanisms, and improve the overall safety profiles of these treatments through precise genomic modifications [5]. This innovative approach promises more effective and personalized cancer treatments.

Furthermore, the fundamental principles of immune memory are essential for the long-lasting protection observed after vaccination [6]. This involves the intricate processes of formation and maintenance of memory B cells, T cells, and innate lymphoid cells. These memory populations are critical for orchestrating rapid and effective immune responses upon re-exposure to pathogens, guiding strategies to optimize vaccine design and enhance durable immunity. Dendritic cells (DCs), with their diverse subsets, are

also central to immunity, playing specialized roles in initiating and shaping immune responses [8]. Their capacity for antigen presentation and T cell activation influences infections, autoimmunity, and cancer, making them a significant area for therapeutic development.

Cytokine signaling represents another critical aspect of immune regulation, profoundly impacting T cell development, differentiation, and effector functions [9]. Various cytokines, through specific receptor interactions and downstream signaling pathways, meticulously orchestrate the maturation of T cells in the thymus and guide their specialization in peripheral immune responses, modulating both immunity and inflammation. Lastly, inflammasomes, which are multi-protein complexes, are recognized as crucial initiators of innate immune responses and inflammatory processes [10]. Their activation mechanisms and roles in pathogen defense, sterile inflammation, and implications across a wide spectrum of diseases, from infections to autoimmune disorders and cancer, are under intense investigation for therapeutic targeting. This comprehensive view underlines the complexity and interconnectedness of immune processes, from basic cell biology to translational applications.

Conclusion

The compiled research elucidates the dynamic landscape of immunology, focusing on the diverse roles of immune cells in health and disease. Significant attention is given to adoptive T-cell therapies for solid tumors, specifically CAR-T and TCR-T cell approaches, which aim to overcome resistance from immune-suppressive microenvironments and antigen heterogeneity [1]. Regulatory T cells are presented as pivotal players in maintaining immune tolerance, employing various mechanisms like cytokine production and metabolic disruption to prevent autoimmune diseases, opening avenues for therapeutic manipulation [2]. The remarkable heterogeneity and plasticity of myeloid cells, including macrophages, neutrophils, and dendritic cells, are explored, emphasizing their adaptive functions in inflammatory processes and cancer, where they critically regulate immune responses and disease progression [3, 7]. Immune cells are also highlighted for their specialized functions in preserving intestinal homeostasis and defending against pathogens, showcasing their complex interactions with the microbiota [4]. Innovations in gene editing, particularly CRISPR/Cas9, are detailed for their application in human immune cells, such as T and NK cells, to enhance cancer immunotherapies [5]. Furthermore, the fundamental principles of immune memory, crucial for long-lasting protection post-vaccination, are discussed, outlining the formation and maintenance of memory B cells, T cells, and innate lymphoid cells [6]. Dendritic cells, with their diverse subsets, are recognized for their specialized roles in initiating T cell activation and shaping immune responses across various conditions [8]. The intricate world of cytokine signaling is shown to profoundly impact T cell development and effector functions [9], while inflammasomes are identified as crucial multi-protein complexes in innate immunity and inflammation, with therapeutic targeting implications [10]. This collection of studies collectively highlights the complexity, adaptability, and therapeutic potential inherent in the immune system.

References

1. Xin M, Ping H, Zheng Y. Adoptive T-Cell Therapies in Solid Tumors: Mechanisms of Resistance, Challenges, and Future Directions. *Cancers* (Basel). 2023;15:5790.
2. Yilin G, Xiaojie C, Hao H. Regulatory T cells in autoimmunity: from mechanisms to therapeutic opportunities. *Front Immunol*. 2022;13:1032151.
3. Yael L, Arthur M, He L. Myeloid cell heterogeneity and plasticity in inflammation and cancer. *Nat Rev Immunol*. 2024;24:75-92.
4. David A, Florent G, Gregory FS. The role of immune cells in maintaining intestinal homeostasis and host defense. *Nat Immunol*. 2023;24:16-25.
5. Zhiyuan L, Bin S, Xiaofeng C. CRISPR/Cas9-based gene editing in human immune cells for cancer immunotherapy. *Front Immunol*. 2023;14:1221773.
6. Mark KS, Shane C, Rafi A. Immune memory: a key for durable protection after vaccination. *Cell*. 2022;185:2269-2287.
7. Antonio S, Alberto M, Massimo L. Macrophage polarization: a key player in inflammatory diseases and cancer. *Nat Rev Immunol*. 2023;23:763-781.
8. William RH, Scott NM, Georgina TB. Dendritic cell subsets and their roles in immunity and disease. *Annu Rev Immunol*. 2023;41:229-251.
9. Sarah LG, Bing L, Xiao Y. Cytokine Signaling in T Cell Development and Function. *Annu Rev Immunol*. 2022;40:497-526.
10. Seon-Man H, Ritesh K, Thirumala-Devi K. Inflammasomes in health and disease: latest advances and therapeutic targeting. *Cell Mol Immunol*. 2023;20:18-32.