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Abstract
Background: Sensory impairment severity may impact individual 
stroke survivors’ motor recovery as well as their response to 
peripheral sensory stimulation treatment.

Objective: To determine the effect of sensory impairment 
level of individual stroke survivors on motor improvement with 
therapy and peripheral sensory stimulation.

Methods: A secondary analysis of a pilot triple-blind 
randomized controlled trial. Twelve chronic stroke survivors 
participated in 2 weeks of hand task-practice therapy. They 
were randomly assigned to the treatment group receiving 
peripheral sensory stimulation or the control group receiving no 
stimulation during the therapy. Sensory impairment level was 
quantified as the pre-intervention sensory threshold. Motor 
improvement was assessed as change in the Box and Block 
Test score from pre to post-intervention. The association 
between sensory impairment level and motor improvement 
was examined using a regression analysis, accounting for 
groups.

Results: Participants with better sensation (i.e., with lower 
sensory threshold) had better motor improvement than 
patients with worse sensation (i.e., with higher sensory 
threshold). Sensory impairment level did not alter the effect of 
peripheral sensory stimulation.

Conclusion: The level of sensory impairment can be utilized to 
predict recovery potentials and direct rehabilitation 
treatment for stroke survivors.

Keywords: Stroke rehabilitation • Upper extremity • 
Neurologic rehabilitation • Subliminal stimulation• Sensory 
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Introduction
Stroke affects more than 795,000 people per year in the U.S. and 

is a major cause of long-term disability [1] More than two thirds 
of stroke survivors have hand impairment [2] which limits their 
ability to perform activities of daily living [3,4]. In addition to 
motor impairment, sensory impairment is a common consequence 
of stroke. An estimated 50%-85%of chronic stroke survivors have 

sensory impairment, [5-7] with 37% of all stroke survivors 
experiencing long-term sensory deficits in the hand alone [8]. 
Sensory impairment significantly hinders motor learning9 and 
thus, may impede motor recovery [10-12]. However, sensory 
impairment level is not typically considered as a 
covariate for rehabilitation intervention outcome.

Peripheral sensory stimulation can be used to supplement 
manual therapy during rehabilitation since adding peripheral 
sensory stimulation enhances upper extremity motor recovery 
post-stroke [13,14]. Peripheral sensory stimulation activates not 
only the afferent pathway but also the motor cortex as seen by 
changes in neurophysiologic measures, thus priming the motor 
cortex for motor activities [15-17]. However, sensory impairment 
may curtail the effect of peripheral sensory stimulation due to 
disruption in the sensory processing pathways [18,19]. Yet, the 
impact of patients’ sensory impairment on the extent of hand 
functional recovery from therapy with peripheral sensory 
stimulation has not been examined. The objective of this study 
was to determine the effect of sensory impairment level of 
individual stroke survivors on motor improvement with therapy 
and peripheral sensory stimulation.

Materials and Methods

Study design
This secondary exploratory study is based on a triple-

blind randomized controlled trial. Twelve chronic stroke 
survivors were randomly assigned to either the treatment group 
or control group (n=6/group). Both groups received hand task-
practice therapy while wearing a peripheral sensory stimulation 
device on the paretic wrist for 2 hours/session, 3 times a week 
for 2 weeks. The device delivered imperceptible random-frequency 
vibration at 60% of the participant’s sensory threshold for the 
treatment group and no vibration for the control group. This 
vibration stimulates skin mechanoreceptors and elevates 
cortical neuronal firing for hand tasks 20, 21 to improve 
sensorimotor function [22-26] and recovery in stroke survivors. 
Further description of this particular peripheral sensory 
stimulation and task-practice therapy used in this study can be 
found.

Participants
Participants were adult (age ≥ 18 years) chronic stroke survivors 

(≥ 6 months post-stroke) with mild-to-moderate upper limb 
impairment (Fugl-Meyer Upper Extremity Assessment (FMA-UE) 
scores 30-60/66 points) with cognitive ability to participate in task-
practice therapy. None of the participants had botulin toxin 
injection in the paretic upper limb within 3 months of enrollment or 
concurrent upper limb therapy other than the study intervention. 
Participants had the mean age of 62 (SD=8) years, mean time post-
stroke of 5 (SD=5) years, and mean FMA-UE score of 48 (SD=8). 
Demographic characteristics, including age, time post-stroke, and 
FMA-UE scores, were not significantly different between groups. All 
participants provided written informed consent. The study protocol 
was approved by the Medical University of South Carolina’s 
Institutional Review Board.

Assessments
The level of sensory impairment was quantified as the 

sensory threshold in this study. The sensory threshold was 
measured before the intervention as the lowest vibration 
amplitude at which the participant could feel the vibration at 
the wrist, determined using the staircase method [28]. The 
sensory threshold was expressed as percent of the maximum 
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Figure 1. Association between sensory impairment level and 
motor improvement. Sensory impairment level was quantified 
as the pre-intervention sensory threshold. The motor improvement 
was quantified as change in the Box and Block Test score from pre- 
to post-intervention. 

Discussion
Sensory impairment is rarely considered in post-stroke 

motor rehabilitation [10,18]. However, sensation is essential to 
enable feedback motor control [29,30]. Longer feedback loops and 
direct projections from the cortical hand sensory areas to motor 
areas exist as evidenced by the cutaneomuscular reflex in 
humans [31,32] and intracortical micro stimulation studies in 
animals [33-36]. These projections enable sensory feedback to 
affect motor output [37]. Thus, it follows that impaired 
sensation results in impaired motor function [38-41]. Many cross-
sectional studies exist to show that stroke survivors with sensory 
deficits tend to have poor motor function [11,12,42-48]. More 
importantly, sensory deficits hamper motor learning. Motor 
learning relies on development of an internal model to output 
motor commands that are appropriate for the motor state 
informed by the sensory feedback [49-51]. Sensory deficits, and 
thus impaired sensory feedback, likely interfere with development of 
an accurate internal model, thereby motor learning [52,53]. The 
significant contribution of the present study is the presentation of 

longitudinal clinical data to suggest that greater severity of 
sensory impairment may diminish upper extremity motor recovery 
following intervention in chronic stroke survivors.

The present study provides insight into the importance of 
considering sensation for motor recovery. For example, sensory 
impairment level may be considered as a prognostic means to 
predict motor recovery. Improved prognosis may assist clinicians 
with determining appropriate rehabilitation goals, rehabilitation 
treatment, and discharge planning for individual stroke 
survivors. In addition, sensory intervention [54,55] may be a 
prerequisite to or in conjunction with motor intervention to promote 
motor recovery.

Interestingly, sensory impairment level did not alter the effect 
of the peripheral stimulation. All but one participant had 
some residual sensation, as seen by the sensory threshold 
less than 100% of the maximum possible amplitude. In addition, 
the peripheral stimulation was adjusted to be 60% of the sensory 
threshold for individual participants. Thus, it is possible that the 
residual sensory pathway, together with the individually adjusted 
peripheral stimulation amplitude, was able to yield the benefit of 
the peripheral sensory stimulation.

Conclusion
The primary limitation of this study is that it is exploratory 

and consequently has the small sample size. Larger studies are 
warranted, where additional covariates such as baseline motor 
function level, sex as a biological variable, age, and time since 
stroke could be examined. Other future research directions 
include investigation of the relative contributions of the 
sensory versus motor pathway integrity to post-stroke motor 
recovery as well as reorganization of these pathways with 
sensorimotor intervention.
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possible vibration amplitude (root mean square velocity of 68 mm/
sec). Motor improvement following therapy was quantified as 
change in box and block test scores from pre to post-
intervention. The post-intervention box and block test was 
completed on average 6 (SD=3.6) days after the last intervention 
day [14].

Analysis
A regression analysis was used to determine the relationship 

between sensory impairment level and motor improvement. The 
regression analysis included the between participant groups 
(treatment and control) and the interaction between sensory 
impairment level and group. All statistical analyses were 
performed using SAS (SAS Institute Inc., Cary, NC, USA).

Results
Sensory impairment level significantly predicted motor 

improvement (p=0.006) (Figure 1). Specifically, participants with 
better sensation (i.e., with lower sensory threshold) had greater 
motor improvement than participants with worse sensation (i.e., 
with higher sensory threshold). The treatment group had a greater 
motor improvement than the control group (p=0.0117). The 
interaction between group and sensory impairment level was not 
significant (p=0.949), indicating that the motor improvement 
decreased similarly in the two groups as the sensory 
impairment increased.
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