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Abstract 
 
Clopidogrel is a cholesterol-lowering drug it can help to 
prevent more plaque from forming. In this present model the 
effects of Clopidogrel on viscosity of blood has been obtained. 
This problem of non-Newtonian and non-linear blood flow 
through a stenosed artery is solved numerically where the 
non-Newtonian rheology of the flowing blood is characterized 
by the generalized Power-law and Bingham plastic fluid 
models. The proposed model are solved and closed form 
expressions for the blood flow characteristics namely, velocity 
profile, volumetric flow rate, pressure gradient, resistance to 
flow, wall shear stress and apparent viscosity are derived. The 
effects of various parameters entering into problem are 
discussed with the help of graphs. It has been found that the 
wall shear stress and resistance to flow and viscosity increases 
with the non-Newtonian behavior index of the blood as well as 
tube radius for constant value of the stenosis height for both 
fluid models but these increases are comparatively small in 
Power-law fluid model. It has been concluded that the patients 
entangled to cardiovascular diseases due to blood clots can 
prevent by giving the regular doses of Clopidogrel in order to 
dilute the blood. This lowers the blood viscosity. Clopidogrel 
would be more helpful in the functioning of diseased arterial 
circulation. This work may be help in diagnosis and treatment 
of cardiovascular disorders as well as people working in 
biomedical field. 
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Introduction  
The study of blood flow through mammalian 
circulatory system has been the subject of scientific 
research for about a couple of centuries. Like most 
of the problems of nature and life sciences, it is 
complex one due to the complicated structure of 
blood, the circulatory system and their constituent 
materials. The experimental studies and the 
theoretical treatments of blood flow phenomena are 
very useful for the diagnosis of a number of 
cardiovascular diseases and development of 
pathological patterns in human or animal physiology 
and for other clinical purposes and practical 
applications. Stenosis “Atherosclerosis” [Fig.1(a)] is 
the abnormal and unnatural growth on the arterial 
wall thickness that develops at various arterial 
locations of the cardiovascular system under 
diseased condition. Stenosis developed in the 
arteries pertaining to brain can cause cerebral 
strokes and the one developed in the coronary 
arteries can cause myocardial infarction which leads 
to heart failure. Everyone starts to develop some 
amount of stenosis as they grow older. In some 
people, the condition can cause complications such 
as a heart attack or stroke. It has been reported that 
the fluid dynamical properties of blood flow through 
non-uniform cross section of the arteries play a 
major role in the fundamental understanding and 
treatment of many cardiovascular diseases Born 
(1963), Eika (1971), Pharmacodynamics (1995), 
Sharis (1998), Mousa (1999), Feng and Weinbaum 
(2000), Cambria-Kiely (2002), Bhatt (2003). Several 
researchers have studied the blood flow 
characteristics due to the presence of a stenosis in 
the tapered arteries. Blood behaves like a 
Newtonian fluid when it flows through larger 
arteries at high shear rates, whereas it behaves like 
a non-Newtonian fluid when it flows through narrow 
arteries at low shear rates. In the region of 
narrowing arterial constriction, the flow accelerates 
and consequently the velocity gradient near the wall 
region is steeper due to the increased core velocity 
resulting in relatively large shear stress on the wall 
even for a mild stenosis. The possibility that the 
haemodynamic factors play an important role in the 
genesis and proliferation of stenosis has attracted 
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the interest of researchers to study blood flow through local 
constrictions Young (1979); Young and Tsai (1973); Lee, (1974), 
Deshpande (1976), Caro (1978); Ahmed and Giddens (1983); 
Ku (1997), Cokelet (1972), Das and Johnson (1998) and others 
during the past few decades. An account of the most of the 
theoretical and experimental studies, reported so far, may be 
had from, Srivastava (2002), Sarkar and Jayaraman (1998), 
Mishra and Verma (2007), Mekheimer and Kot (2008), 
Srivastava and Rastogi (2009, 2010), etc. The analysis of blood 
flow through a symmetrically stenosed artery has been studied 
by Singh (2009), Pontrelli, (2001), Jung et al. (2004), Masako, 
(2005). 
 

 
 

Fig. 1(a). Atherosclerosis.  
 
Sanyal and Maji (1999) investigated the unsteady blood flow 
through an indented tube in presence of stenosis. Chakravarty 
and Datta (1990), Labarbera (1997), Fry (1972),  have 
performed rheological study on the effect of mild stenoses on 
the flow behavior of blood in a stenosed arterial segment. The 
various geometries of stenosis have been suggested by the 
researchers. The cosine-shaped geometry was considered and 
analysed with different parameters by many researchers like 
Kapur (1985), Chakravarty (1987). The power-law and casson 
fluid models with cosine-shaped geometry were discussed by 
Shukla (1980). A composite shaped geometry of arterial 
stenosis was also suggested and investigated. The bell-shaped 
geometry with different fluids was discussed by Misra and Shit 
(2006). In all of the above studies the shape of stenosis was 
considered to be symmetrical about the axis as well as radius 
of the flow cylinder. The radially nonsymmetric stenosis has 
been analysed by Shukla and Parihar, (1990), Sugihara (2003), 
Tandon et al. (1991), Liepsch, (2002).  
 
The effects of shape of stenosis on the resistance to blood flow 
through an artery has been investigated by Haldar (1985). Due 
to the presence of a new parameter the formulation of our 
model is mathematically more general and includes the model 
as a special case. In  the  present  mathematical model,  a  
problem  in  which  blood  flow  has  been considered  
symmetrical about the axis but non- symmetrical with respect 
to radial co-ordinates with  mild  stenosed  artery  by 
introducing blood as Power-law fluid model and Bingham 
plastic fluid model. The effects of stenosis size, stenosis length, 
stenosis shape parameter on resistance to flow, wall shear 
stress and apparent viscosity have investigated.  

 

Formulation of the Mathematical Model 
We have considered an artery having mild 
stenosis. The flow of blood is assumed to be 
steady, laminar and fully-developed. Blood 
is taken as a Bingham plastic fluid. It is 
assumed that stenosis is symmetrical about 
the axis but non- symmetrical with respect 
to radial co-ordinates. The mathematical 
expression for geometry can be written as, 
 

(m 1) m

0 0

0

R(z)
1 A[L (z d) (z d) ], d z d L

R

1, otherwise,

 
        


 

                                                  (1) 
m/(m-1)

m

0 0

δ m
A =

R L (m -1)
,   

 

Where 
R0  : Radius of normal tube 
R(z)  : Radius of stenotic region 
L   : The length of the artery 
L0   : The length of the stenosis 
d   : Distance between equispaced points 
δ  : Maximum height of stenosis (δ << R0) 
m   : Parameter determining the shape of 
stenosis (m ≥ 2) 
 
The schematic diagram of the flow is given 
by Fig.1(b). 
 

 
Fig.1 (b). Stenotic Artery 

 
Conservation equation and boundary 
conditions 
 

The equation of motion for laminar and 

incompressible, steady, fully-developed, one-
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dimensional flow of blood whose viscosity varies along radial 

direction in an artery reduces to: 

P 1 (r τ)
0 ,

r r z

P
0 ,

r

  
     


  

 

                                       (2)                                                                            

where (z, r) are co-ordinates with z measured along the  axis 
and r measured normal to the axis of the artery.  
 
The boundary conditions are introduced to solve the above 
equations, 

L0

u/ r = 0         at r = 0, u = 0               at r = R(z)

   is finite       at r = 0        

P = P              at z = 0, P = P              at z = L

τ

 





(3)                                                                             

                                                                                                                              

 
Bingham plastic fluid model 
For Bingham plastic fluid, the stress-strain relation is given by 

0

P
0

du
τ= τ +μ -

dr

Rdp r dp
where τ= - , τ = - ,

dz 2 dz 2

 
 
 

  
   
   

      (4)                                                                          

u     : axial velocity 
     : viscosity of fluid  

(-dp/dz)   : pressure gradient  

 
 
Solution of the Problem 
 
The expression for the velocity, u obtained as the 
solution of equation (2) subject to the boundary 
conditions (3) and equation (4), is obtained as (for 
RP ≤ r ≤ R(z))   

2 2 3/2 3/21/22 3/2

0 0 0 0 0

0 0 0 0 0 0

R τ R 4R τdp R r R r 1 dp R r
u=- - + - - - -

4μ dz R R μ R R 3μ 2μ dz R R

                
                
                     

                                                                                   (5) 
The constant plug flow velocity, uP may be obtained 
from equation (5) evaluated at r = RP. 
The volumetric flow rate Q can be defined as, 

R R

0 0

du
Q 2πu rdr π r dr,

dr

 
     

 
                (6) 

                                                                 The flow flux, Q 
when Rp<< R (i.e., the radius of the plug flow region 
is very small as compared to the non-plug flow 
region), is calculated as 
 
 

 
1/2

4 3 7
4 7/2

0 0 0 0

0 0 0

R π τ π 4R π τdp R R 1 dp R
Q = +- +- -

8μ dz R 3μ R 7 μ 2μ dz R

        
        
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                                                                                          (7)                       
4πR dp

Q f(y),
8μ dz

 
  

 
                                        (8)                                                                                                  

From above equation pressure gradient is written as 
follows, 

4

0

dp 8μQ
- = f(y)

dz πR

 
 
 

                                                  (9)                                                                         

     
7/2

4 3 7
0 0 0τ π 4R π τ 1 dp

f(y) y +- y +- - y
3μ 7 μ 2μ dz

  
   

  
 
Integrating equation (9) using the condition (3) P = 
P0 at z = 0 and P = PL at z = L. We have 

 

L

4 4L 0
0

00

8μQ dz
ΔP P P

πR R(z)/R f(y(z))
       (10)                                                                          

The resistance to flow is denoted by λ and defined 
as follows, 

L 0
P - P

λ =
Q

                                                         (11)                                                                                                       

The resistance to flow from equation (11) using 
equations (10) is written as, 

   
d+L0

40 0
d

0

/ /
dz

λ =1- L L + f L
(R (z)/R ) f(y(z))


  (12)                                                             

where f0 is given by 

     
7/2

4 3 70 0 0
0 0 0 0

τ π 4R π τ 1 dp
f R/R +- R/R +- - R/R

3μ 7 μ 2μ dz

  
   

  

 

Following the apparent viscosity (µapp) is defined as 
follows; 

 
app 4

0

1
μ

R(z)/R f(y)


                         (13)                                                                                     

The shearing stress at the wall can be defined as; 

R 0

r=R(z)

du
τ = τ +μ -

dr

 
 
 

                                   (14)                                                                                   

 

 
 
Results and Discussion 
In order to have estimate of the quantitative effects 
of various parameters involved in the analysis 
computer codes were developed and to evaluate the 
analytical results obtained for resistance to blood 
flow,  apparent viscosity and wall shear stress for 
normal and diseased system associated with 
stenosis due to the local deposition of lipids have 
been determine. Fig.2 reveals the variation of 

resistance to flow () with stenosis size (/R0) for 
different values of flow behavior index (n). It is 
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observed that the resistance to flow () increases as stenosis 

size (/R0) increases. It is also noticed here that resistance to 

flow () increases as flow behavior index (n) increases. It is 
seen from the Fig.2, Fig.3 that the ratio is always greater than 
1 and decreases as n decreases from unity. This result is similar 
with the result of [Kesmarky (2003), Shukla, et al., (1997)]. 
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Fig.4 Variation of wall shear stress with stenosis length  for different 
values of n
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Fig 5, Variation of apparent viscosity with m of 
different values of stenosis size 
 
 

In Fig.3, resistance to flow () decreases as stenosis 
shape parameter (m) increases and maximum 

resistance to flow () occurs at (m = 2), i. e. in case 
of symmetric stenosis. This result is therefore 
consisting to the result of [Haldar, (1985)]. It is also 

seen that, for /R0 = 0.1 and L0/L = 1.0  In Fig.4 the 
variation of wall shear stress (τ) with stenosis length 
(L0/L) for different values of flow behavior index (n) 
has been shown. This figure depicts that wall shear 
stress (τ) increases as stenosis length (L0/L) 
increases. Also it has been seen from this graph that 
the wall shear stress (τ) increases as value of flow 
behavior index (n) increases. As the stenosis grows, 
the wall shearing stress (τ) increases in the stenotic 
region. It is also noted that the shear ratio given by 
(15) is greater than one and decreases as n 
decreases (n < 1). These results are similar with the 
results of [Shukla, et al., (16)]. It is also seen that the 
shear ratio is always greater than one and decreases 

as n decreases. For /R0 = 0.1 the increases in wall 
shear due to stenosis is about 37% when compared 
to the wall shear corresponding to the normal artery 
in the Newtonian case (n = 1), but for n = 2/3 this 
increase is only 23% approximately. However, for 

/R0 = 0.2, the corresponding increase in Newtonian 
(n = 1) and non-Newtonian (n = 2/3) cases are 95% 
and 56% respectively. Fig.5 reveals the variation of 
apparent viscosity with stenosis shape parameter for 
different values of stenosis size. It may be observed 
here that the apparent viscosity decreases as 
stenosis shape parameter increases. This figure is 
also depicted that apparent viscosity decreases as 
stenosis size increases.  

 
Power-law Fluid: 
Non-Newtonian fluid is that of power-law fluid 
which have constitutive equation, 
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c

1/n
du

= f( ),
dr μ

Rdp
where τ

dz 2

τ
τ


            

 
   
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                         (15)                                                                 

Where u is the axial velocity, μ is the viscosity of fluid, (-dp/dz) 
is the pressure gradient and n is the flow behaviour index of 
the fluid. 
Solving for u from equation (15), (4) and using the boundary 
conditions (3), we have, 

C

1/n

1/ndu P
= [(r - R ) ],

dr 2μ

 
 
 

                            (16)                                                                 

The volumetric flow rate Q can be defined as, 
R R

0 0

du
Q 2πu rdr π r dr,

dr

 
     

 
 (17)                                                   

  
By the help of equations (15) and 1(6) we have,  

[(1/n) 1]1/nP nπ
Q ( ) (R)

2μ (3n 1)

 
  

 

               (18)                                                    

       
From equation (18) pressure gradient is written as follows, 

n

3n 1

dp (3n 1) 1
2μ Q

dz nπ (R) 

 
   

 

                      (19)                                                      

       
Integrating equation (19) using the condition P = P0 at z = 0 and 
P = PL at z = L. We have, 

   

n
L

L 3n+10 1 3n00
0

(3n 1) 2μ dz
P P Q

nπ R R/R


 
   

 

   (20)                                                        

The resistance to flow (resistive impedance) is denoted by λ 
and defined as follows: 

L 0
P - P

λ =
Q

                                                                              (21)                                                    

The resistance to flow from equation (21) using equations (20) 
can write as: 
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n d Ld L0

3n 1 3n 10
0 0 d L00

0

(3n 1)Q 2μ dz
λ dz dz

nπ QR R R
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 (22)                                 

When there is no stenosis in artery then R = R0, the resistance 
to flow,   

n

3n 1N
0

(3n 1) 2μ
λ Q L

nπ QR 

 
  
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                              (23)                                                                

From equation (22) and (23) the ratio of (0 / N) is given as; 

 

d L
0

0 0
3n 1

0N d R/R

λ L 1 dz
λ = 1

λ L L




   

         (24)                                                                     

Now the ratio of shearing stress at the wall can be written as; 

3n

0R

N

Rτ

τ R


 

  
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                             (25)                                                                                             

R
3n

N

0

τ 1

τ δ
1-

R


 
  
 

                     (26)                                                                                               

 

 

  

 

 
 

Fig.6 reveals the variation of resistance to flow () 
with stenosis shape parameter (m) for different 

values of stenosis size (/R0). It is observed that the 

resistance to flow () decreases as stenosis shape 
parameter (m) increases and maximum resistance to 

flow () occurs at (m = 2), i. e. in case of symmetric 
stenosis. It has also been seen from this graph that 

resistance to flow () increases as stenosis size 

(/R0) increases. These results are therefore 
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consisting to the result of Mishra and Verma (2007). Fig.7 
shows the variation of wall shear stress (τ) with stenosis size 
for different values of stenosis length (L0/L). It is clear from the 
figure that the wall shear stress (τ) increases as stenosis size 
and stenosis length increases. These results are consistent to 
the observation of Haldar (1985). The variation of apparent 
viscosity with stenosis length (L0/L) for different values of 

stenosis size (/R0) has been depicted in Fig.8. This figure 
shows that the of apparent viscosity increases as stenosis size 

(/R0) increases. This result is similar to the results of Sanyal 
and Maji (1999) Jilma (2003). 
 

Conclusion Remarks 
In this paper, we have studied the effects of Clopidogrel on 
blood flow through a stenosed artery along with the other 
effects of the stenosis in an artery by considering the blood as 
Power-law and Bingham plastic fluid models. It has been 
concluded that the resistance to flow and wall shear stress 
increases as the size of stenosis increases for a given non-
Newtonian model of the blood. The flow resistance decreases 
with increasing values of shape parameter ‘m’ and attains its 
maximal in the symmetric stenosis case (m=2) for any given 
stenosis size. Thus the increasing value of the shape parameter 
would cause a considerable increase in the flow of blood. 
These increases are however, small due to non-Newtonian 
behaviour of the blood. The apparent viscosity increase as 
stenosis size and stenosis length increases, but it is decreases 
as stenosis shape parameter increases. The changes are 
different in both the cases of fluid models. By considering 
blood as power-law fluid model the flow characteristics are 
more favorable in comparison to Bingham plastic fluid model.  
Thus it appears that the non-Newtonian behaviour of blood by 
considering blood as power-law fluid model is more helpful in 
the functioning of stenosed blood vessels circulation. It has 
been concluded that the patients entangled to cardiovascular 
diseases due to the formation of blood clots can prevent by 
giving the regular doses of Clopidogrel in order to dilute the 
blood. This drug can help to prevent more plaque from 
forming and lowers the blood viscosity. Clopidogrel would be 
more helpful in the functioning of diseased arterial circulation. 
This work may help in early identification, diagnosis and 
treatment of cardiovascular diso rders and also for the people 
working in the field of medical science.    
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