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Abstract

Distance correlation (DC) is a new choice to compute the relation between variables.
However, the Bayesian counterpart of Distance Correlation is not well established. In
this paper, a Bayesian counterpart of Distance Correlation is proposed. The proposed
method is illustrated with Liver Cirrhosis Marker data. Previously published data on the
relation between aspartate transaminase (AST) and alanine transaminase (ALT) is used
to formulate the prior information for Bayesian computation. The computed DC using
the proposed method between AST and ALT (both of which are markers of liver
function) is 0.44. The credible interval is ranges 0.41 to 0.46. Bayesian counterpart
proposed herein to compute DC coefficient is simple and handy.

Keywords: ICC, Cannonical correlation, Credible interval, Distance covariance,
Conjugate prior

Introduction
The statistical dependence between two random vectors (irrespective of the measurement
dimension) can be measured by distance correlation (DC).1,2 DC ranges between 0−1
with 0 indicating that the vectors are completely in- dependant statistically. As a
generalized form of Pearson correlation it provides a method to measure multivariate
independence. Szekely et al have shown that it is consistent for all dependent alternatives
through finite second moments.3 The bias outcome of DC through different dimensions
are also tested.3 The unbiased T test is considered suitable for testing the independence
of variables using distance correlation.

The use of DC has been extended for high dimensional data.4 The application of DC for
functional data has also been extended recently through Hilbert space.5 Recently, several
new tools are available to the scientific community for more complex issue through
Cannonical (consideration of linear combinations between variables through maximum
correlation with each other), Rank and Renyi correlation (through observing the cosine
angle between the linear subspaces of mean zero square integral real-valued random
variables from individual random variable.4 However, all of them having some
advantages and limitations.6 The joint independences of random variable can be explored
through DC.2 It is a matrix inversion free approach. Dependences measurement between
two random variables can be observed and tested through matrix inversion free
approach.7 Experimental and observational studies in clinical medicine usually rely on
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exploring the relation between two variables of interest (for example understanding how
high blood pressure and increased total cholesterol in serum are related with each other
to predict the risk of myocardial infarction). The objective of this present study is to
demonstrate the use of a Bayesian approach to DC and formulate a methodology for
calculation. The method is then illustrated with clinical trial example.

Distance Covariance and Distance Correlation
Distance covariance between the random variables X and Y is defined with marginal
characteristic function of fY (t) and fY (s) by,�2   (�,�) = [�(�,� )   �, � − ��(�)��   � ]2 (1)
The function f (X, Y) is joint characteristics function of X and Y. The terms s and t are
the vectors and the product of t and s is < t, s > .The distance covariance measures the
distance f(X, Y) (t, s)-f(X) f(Y) (s) between the joint characteristic function and marginal
characteristics function. The random vec-tor X and Y are in Rp and Rq respectively. The
hypothesis is H0: fX,Y = fX fY and H1 : fX,Y ̸= fX fY The distance variance is�(�) = [��,�(�, �) − ��(�) �� (�)] (2)
DC between X and Y is defined with finite first moments R(X, Y) byR2(X, Y ) = V 2(X, Y ) V 2(�) V 2 (�) > 0 (3)
The distance covariance Vn (X, Y) is defined with��2(�,�) = 1�2 ∑�, � = 1� ������ (4)
Similarly it can be defined as:��2(�,�) = 1�2 (5)
The parameters are��� = ��− �� ,, ��− = 1��� = 1� ��� and �..− = 1�2�� = 1� ���� = ���− � . �− + �..− (6)
Similarly, BkL is defined.

Properties
The DC provides the scope to generalize the correlation between variables (X and Y) by
R. It is defined on arbitrary dimensions R=0 for independent of X and Y. The range of
DC is 0 < R < 1.The R can be defined as the function of Pearson correlation coefficient ρ
with R(X,Y) < |ρ(X,Y)| with equality when ρ ± 1. The random variables X and Y are
expressed as Ai=Xi+ϵi and Bj=Yj+ϵj respectively. The error terms ϵi and ϵj are
independent with the variables Xi and Yj. Let the relation between random functions Ai
and Bj is irrelevant. But the relation between Xi and Yj is importance and matter of
concerned. The strength of relation between X and Y can be measured through DC in
this scenario.
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In One-sided Test
The frequency approach test the problem through p(X) value of the null hypothesis H0.
In contrast, Bayesian measures through posterior probability p (H0 |X). Let the data
follows normal distribution (θ, σ2) with null hypothesis H0: θ ≤ 0 and H1: θ>0. The
frequency and robust Bayesian often coincide.8 Let the marginal DC ρ is applied
between p(X)=1−Φ(X/σ) and p (H0 |X).The DC should be greater than or equal to zero.
Because p(X) and p (H0 |X) both are decreasing with respect to X.

Parameter and Unbiased Estimator
Suppose, (θ, X) are the random variables with joint characteristics function f(X, Y) (t, s)
and marginal distribution of θ is π. The estimator of θ is δ(X) and square error loss is r(π,
δ) = E[δ(X) − θ]2 and risk is δπ(X ) = E(θ/X ).The DC between θ and δ(X) is�(�, �(�)) = var(�) + ��� ��(�)var(�) var �+ (�) + �(�, �)− � �2(�) (7)
Method
The Bayes’ Theorem provides the prior information about the relevant parameter for the
specific statistical analysis. It is helpful to test the hypothesis in presence of posterior
probability of the parameter of interest. The parameter of interest R(X, Y) can be
computed with posterior probability through Bayes’ theorem�(�(�,�)/�����������) = �(�����������/�(�,�))�(�(�,�))�(�����������) (8)
The term P (R(X,Y) is the prior probability of R(X,Y) observed from the previous study.
The term P (information/R(X,Y) is likelihood of R(X,Y) occurred in the previous study
or data collected by the investigator. The sum of the function 1 should be equal to 1 as
the theory of total Bayes theorem. The relation between posterior and prior is�������������������� ∝ ������ℎ��� × ���������������� (9)
The posterior density of R(X,Y) is generated with�(�(�,�)/�,�) ∝ �(�(�,�)) (1− �(�,�)2)(� − 1)/2

(1− �(�,�) × �)� − 32 (10)
Let the mean and variance of X and Y are μ1, μ2, σ21, σ22 respectively. The mean (z) is
derived from

e� = �1�22�2�12 (11)
The term R(X, Y) is defined by tanhϵ and it is assumed ϵ N (z, 1 ).The mathematical
formulations are detailed in Fisher (1915). The hyperbolic trans- formation plays role to
consider the conjugate prior with normal distributions.

The posterior mean can be represented with�posterior = �posterior2 [������tanh−1�(�,�)�����+ �������ℎ���tanh−1�(�,�)������ℎ���] (12)�posterior2 = 1������+ �������ℎ��� (13)
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The prior with the formP(R(X, Y ))�(1 ‐ R(X, Y )2)� (14)
The prior is dependent on the choice of c. The c=0 gives the P (R(X,Y) 1 the
specification of prior is important for testing the parameters in hypothesis H0 and H1.
The main focus of research in Bayesian approach is the specification of prior. The prior
specification is carried out through regression modeling. Let the response of interest
(Y ), covariates (X ) ,error(ϵ) and intercept (α) are in regression line through� = �+ ��+ � (15)
Zellner (1986) has introduced the g prior for the above mentioned β coefficient.
However, it is the extension of Jeffrey’s prior on the error precision ϕ with uniform prior
of interest α byp(� �,�,�) = �(0, ��(���)−1),�(�,�)� 1� (16)
The information about β can be obtained through ϕ−1 (X T X)−1. Further, specified
value of g gives the exposure about observed data. The specified value of g=1 says no
influences of observed data. Whereas, g=5 gives 15 weight as the observed data. The
selection of value of g is very important.9 It is considered as g=n. n is the sample size.
Discussed to consider g=k. (k is the number of parameters). There are several literatures
about selection of g prior. The work is contributed with Jeffrey’s-Zellner-sion (JZS) prior
for g-value. It was represented by Liang and his colleagues and applied for correlation
coefficient.10,11 The prior is likep(� �,�,�) = ∫�(0, ��(���)−1)�(�)�� (17)p(�)� 1� (18)
p(g)= �2)12�(12)� − 32 − �2� (19)
The above mentioned formula is also useful to calculate Bayes factor. The prior is
applied as default prior for t-test.7 The Bayesian factor is applied through JZS for DC in
regression line. The regression coefficient β is allowed to the application JZS prior. Our
goal is to compute DC, Intercept (α), regression coefficient (β) and error term (ϵ) s
detailed in equation (1). Let the equation (1) further separated into Model (M1) and
Model (M0) by�1:� = �+ ��+ � (20)�0:� = �+ � (21)
The model ((M1)) states the presence of DC and absence of it by Model ((M0 )).

Now, the Bayes Factor through JZS is defined [10] as,

BF10 = (�2)12�(12) �∫0∞(1 + �)((� − 2)/2�[1− �2)�]− (� − 1)2 � − 32� − ( �2�)�� (22)
BF10 = �( ��1)�( ��0 (23)
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If the value of BF10 becomes more than 1, it state about presences of DC otherwise not.

Testing

Under the null hypothesis H0, the model (M0) is assumed and (M1) for alternative one
i.e., H1. The prior probability of null is assigned as p (M0) and alternative as p (M1).
Thereafter, Baye’s theorem is applied on the observed data to compute posterior
probability of the hypothesis. The appearance of posterior probability of alternative
Hypothesis is computed as

�( ��1) = �( ��1)�(�1)�( ��1)�(�1) + �( ��0)�(�0) (24)
The term P (Y |M1) is the marginal likelihood of the data for alternative hypothesis.
Further, the marginal likelihood is calculated as�(�1� ) = ∫�∞�(� �,�1)�(� �1)�� (25)
Bayes Factor is useful to compute the appearance of P (M1|Y) in comparison to P (M0 |
Y)12:�( ��1)�( ��0) = ��10��(�1)�(�0) (26)
Illustrated Example

Aminotransferases are serum enzymes which are used to detect malfunction of liver,
heart, lung, skeletal muscles and brain.13 Among the aminotransferases, alanine and
aspartate aminotransferase (ALT and AST respectively) are routinely measured to assess
liver function.14 Kumar et al have recently published the normal range of serum AST and
ALT in over 5000 Indian blood donors and have proposed normal limits for healthy
population.15 In this ex- ample we illustrate the use of DC between AST and ALT
measurements in the same individuals. The generated information between AST and
ALT is used as prior information of sample size of 4917 individuals.15 The raw data on
AST and ALT of 606 individuals are detailed.16 In both the above mentioned study, the
relation between Serum alanine aminotransferase (ALT) and serum aminotransferase
(AST) are observed. The relations between variables are explored through distance
covariance with Bayesian approach. The first relation between ALT and AST is
observed.15 The measured distance correlation data is observed with error. Bayesian
posterior estimate is computed for robust

DC between ALT and AST by,�posterior2 = 1�prior + �likelihood = 14917 + 606 = 0.00018 (27)
�posterior = 0.00018(4917tanh−1+ 606tanh−10.80) (28)�posterior = 0.44 (29)
The confidence interval is

�posterior± 1.96 (�����2 ) = 0.44 ± 1.96(0.00018)12 (30)
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i.e. (0.41, 0.46). It shows the posterior estimates of DC i.e., R(X,Y) is 0.44 with credible
interval (0.41, 0.46). This simple approach for DC can be extended in other experimental
research. The posterior computed mean is 0.44 and sample size 606. The values are
applied to obtain the BF10 in equation (23). The BF10 is calculated with 8.3. It is the
evidence in favour of M1 in comparison to model M0. The presence of DC is tested
through g prior.

Discussion
Recently, the testing process to check the presences of DC has been at- tempted. The t-
test is found suitable to test the presence of DC. The relevant factors are proposed to
perform it.3 The evaluation of direct relation between two variables is important. Pearson
and Spearman correlations are commonly applied tools to explore relation between
variables. The strength of relation between variable can be classified by Cannonical,
Rank and Renyi Correlation.4 The widely explored correlation tool-Pearson correlation
fails in multivariate data set. It becomes zero for independent bivariate normal
distribution. But it failed to specify multivariate dependence in general. The limitation
can be overcome by joint independence of the random variable through DC. The DC is
product-moment correlation and generalized form of bivariate measures of dependency.
It is very much useful and unexplored area for statistical inference. The idea of this work
is to establish the application of new types of correlation tools for measurement of
dependence between variables. It is more applicable for complicated multivariate data.
The detailed application DC is recently established.2 There are several advantages for
application of DC over simple. The Bayesian application on DC computation has been
elaborated.6 But, the application of g-prior of DC testing is completely new. It is general
tendency to avoid the prior information about the relation between variable. The
Bayesian gives the scope to consider the prior information of the relation between
variables to explore the strength of current relation between variables. The application of
Bayesian to compute DC is illustrated and Hypothesis test statistics through Bayes
Factor is detailed on Biochemical marker for liver performance. The work is illustrated
with the estimation of DC between AST and ALT. It is dedicated for Bayesian test to
compute DC. The simple method proposed can be used by researchers exploring the use
of DC in their research work. This work is not an attempt to develop a new statistical
model. But it is an effort to explore the application of Bayesian approach to compute DC.
The application is illustrated with biomarker of liver cirrhosis observed through clinical
trial data analysis. Bayesian can be useful to get prominent evidence for test statistics on
relation between variables. Bayes factor is useful for computation of DC. It is useful to
figure out the strength of hypothesis. It can be considered as easily interpretable tool to
discover the relations. This illustrated tool can be widely accepted for future research to
explore relation between variables.
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