

Cell Adhesion: Function, Dysfunction, Therapeutic Opportunities

Anna Muller

Department of Molecular Cell Science, University of Zurich, Zurich, Switzerland

Corresponding Authors*

Anna Muller

Department of Molecular Cell Science, University of Zurich, Zurich, Switzerland

E-mail: anna.muller@uzh.ch

Copyright: 2025 Anna Muller. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received: 01-Oct-2025; **Accepted:** 10-Nov-2025; **Published:** 10-Nov-2025

Introduction

Cell adhesion molecules, particularly integrins, are recognized for their significant contribution to drug resistance in cancer. These adhesion mechanisms enable cancer cells to effectively interact with their microenvironment, providing critical protection from both conventional chemotherapy and more targeted therapies. Understanding these intricate pathways is therefore crucial for developing novel and effective strategies to overcome treatment failure in oncology [1].

The cadherin-catenin complex plays a critical and fundamental role in mediating cell adhesion, a process that is indispensable for proper tissue organization and successful embryonic development. Research highlights how the dysregulation of this complex significantly contributes to various diseases, notably cancer metastasis, thereby demonstrating its profound importance far beyond mere structural integrity [2].

Specific cell adhesion molecules hold essential roles at the neuromuscular junction (NMJ), which serves as the critical synapse connecting motor neurons and muscle fibers. These molecules are absolutely paramount for the correct formation, diligent maintenance, and optimal function of the NMJ. Importantly, any dysfunction observed in these adhesion mechanisms directly contributes to the onset and progression of various neuromuscular diseases [3].

The pathophysiology of endometriosis involves significant contributions from cell adhesion and migration. Specifically, altered adhesive properties of endometrial cells are directly implicated in their ectopic implantation and subsequent uncontrolled growth. This understanding sheds crucial light on the molecular mechanisms driving this complex and often intensely painful disease [4].

An intricate and dynamic relationship exists between cell adhesion molecules and the immune system within the complex environment of cancer. These molecules are instrumental in regulating the critical interactions between cancer cells and immune cells, directly influencing processes such as immune evasion, tumor progression, and the overall responsiveness of tumors to immunotherapy treatments [5].

The fascinating concept of mechanotransduction within cell adhesion is profoundly influenced by the involvement of YAP/TAZ transcriptional co-activators. This process explains how cells actively sense and respond to diverse mechanical cues originating from their surrounding environment through specialized adhesion complexes, thereby influencing crucial aspects like cell fate, proliferation, and disease progression via these critical proteins [6].

Targeting cell adhesion represents a promising therapeutic overview in the treatment of multiple myeloma. Myeloma cells heavily rely on specific adhesion interactions with the bone marrow microenvironment, which are vital for their survival and contributes to drug resistance. Disrupting these interactions offers promising strategies for achieving improved patient outcomes [7].

Cell adhesion plays a fundamental and indispensable role within the stem cell niche. Precise adhesive interactions are crucially important for maintaining stem cell quiescence, enabling their essential self-renewal capabilities, and guiding their appropriate differentiation into specialized cell types. Disturbingly, disruptions in these delicate mechanisms can unfortunately lead to various diseases, including the initiation and progression of cancer [8].

The involvement of cell adhesion molecules in the development of inflammatory bowel disease (IBD) is a key area of study. These molecules are instrumental in facilitating immune cell trafficking to the gut and mediating the chronic inflammation characteristic of IBD. Consequently, they emerge as significant potential therapeutic targets for effectively managing this challenging condition [9].

The crucial mechanisms of cell adhesion are absolutely indispensable in the complex and highly orchestrated process of wound healing. Various adhesion molecules meticulously orchestrate vital cellular events such as coordinated cell migration, controlled proliferation, and the essential remodeling of damaged tissue. Understanding these mechanisms highlights numerous potential therapeutic targets aimed at substantially improving wound repair and promoting effective regeneration [10].

Description

Cell adhesion is a fundamental biological process crucial for tissue organization, guiding embryonic development, and maintaining cellular in-

tegrity. These intricate processes rely on complex interactions between cells and their microenvironment, primarily mediated by a diverse array of specialized molecules. The cadherin-catenin complex, for instance, is indispensable for mediating robust cell-to-cell adhesion, with its dysregulation clearly implicated in pathological conditions such as cancer metastasis, underscoring its profound importance beyond mere structural support [2]. Integrins represent another class of pivotal cell adhesion molecules, critical for cellular communication, migration, and widely recognized for their deep involvement in various disease pathologies. Understanding these foundational adhesive mechanisms provides a basis for appreciating their broader implications.

A significant area of research actively examines the multifaceted involvement of cell adhesion in the complex biology of cancer. Cell adhesion molecules, particularly integrins, are now understood to significantly contribute to the challenging problem of drug resistance in cancer treatment. They achieve this by enabling tumor cells to establish protective interactions with their immediate microenvironment, effectively shielding them from the cytotoxic effects of conventional chemotherapy and targeted therapies, thereby leading to treatment failure [1]. Beyond integrins, cell adhesion molecules also intricately regulate the interactions occurring between cancer cells and various immune cells. These regulatory functions profoundly influence processes such as immune evasion by tumors, overall tumor progression, and the ultimate responsiveness of a patient to innovative immunotherapy approaches [5]. In the context of multiple myeloma, it is evident that myeloma cells heavily depend on specific adhesion interactions within the bone marrow microenvironment for their continued survival and inherent drug resistance. Consequently, strategically disrupting these specific adhesion interactions presents a highly promising therapeutic strategy for achieving improved patient outcomes and overcoming resistance in this difficult-to-treat hematological malignancy [7]. This highlights adhesion as a dynamic and crucial target in oncology.

Beyond oncological implications, dysfunction in cell adhesion mechanisms underpins several other significant human diseases, revealing the broad impact of these molecular interactions. For example, at the crucial neuromuscular junction (NMJ), which is the specialized synapse linking motor neurons to muscle fibers, specific cell adhesion molecules are absolutely essential for its proper formation, sustained maintenance, and efficient function. Disturbingly, any dysfunction in these critical adhesion mechanisms directly contributes to the etiology and progression of a variety of debilitating neuromuscular diseases, impacting muscle control and function [3]. Similarly, in the challenging gynecological condition of endometriosis, altered adhesive properties of endometrial cells play a pivotal role. These aberrant adhesion characteristics facilitate their ectopic implantation and subsequent growth outside the uterus, significantly contributing to the pathophysiology of this complex and often severely painful disease [4]. Furthermore, in the pathogenesis of inflammatory bowel disease (IBD), cell adhesion molecules are key players. They actively facilitate the targeted trafficking of immune cells to the gut lining and mediate the chronic inflammation characteristic of conditions like Crohn's disease and ulcerative colitis. This crucial involvement makes them compelling potential therapeutic targets for effectively managing and mitigating the debilitating symptoms of IBD [9].

Cell adhesion is also critical for fundamental cellular processes that sustain life and enable regeneration. Within the specialized microenvironment of the stem cell niche, precise adhesive interactions are paramount. They are absolutely crucial for maintaining stem cell quiescence, which is their dor-

mant state, enabling their remarkable self-renewal capabilities, and guiding their appropriate differentiation into various cell types. Unfortunately, disruptions in these delicate adhesive mechanisms can have profound consequences, potentially leading to the onset and progression of various diseases, including the development of cancer [8]. Another fascinating aspect is mechanotransduction within cell adhesion, which illustrates how cells actively sense and robustly respond to physical, mechanical cues originating from their extracellular environment. This intricate process occurs through specialized adhesion complexes, with key proteins like YAP/TAZ transcriptional co-activators playing significant roles in relaying these mechanical signals to the nucleus, thereby influencing fundamental processes such as cell fate decisions, rates of proliferation, and the overall progression of disease [6]. Lastly, the complex and highly coordinated process of wound healing relies extensively on orchestrated cell adhesion mechanisms. A diverse array of adhesion molecules precisely orchestrate vital cellular events including coordinated cell migration, controlled proliferation of new cells, and the essential remodeling of damaged tissue. Identifying and understanding these intricate mechanisms highlights numerous potential therapeutic targets aimed at substantially improving wound repair outcomes and promoting effective tissue regeneration [10].

Conclusion

Cell adhesion molecules are vital for diverse biological processes, encompassing tissue organization, embryonic development, immune responses, and disease progression. Key molecules like integrins and cadherin-catenin complexes maintain cellular integrity, mediate interactions with the microenvironment, and facilitate mechanotransduction. Their dysregulation has profound implications in various pathologies. Integrins, for instance, contribute significantly to cancer drug resistance by sheltering tumor cells from therapies, while altered adhesion properties drive conditions like endometriosis through ectopic cell implantation. The disruption of the cadherin-catenin complex directly impacts cancer metastasis. These molecules are also crucial for the proper function of the neuromuscular junction, where their dysfunction can lead to debilitating neuromuscular diseases. In cancer immunology, they precisely regulate interactions between cancer and immune cells, influencing immune evasion and therapeutic responsiveness. Mechanotransduction, involving YAP/TAZ, demonstrates how cells interpret mechanical cues from their surroundings, affecting cell fate and disease progression. Targeting cell adhesion in multiple myeloma shows promise for overcoming survival and drug resistance mechanisms. Adhesion is fundamental in the stem cell niche, governing stem cell quiescence, self-renewal, and differentiation, with disruptions potentially initiating diseases like cancer. Furthermore, cell adhesion molecules are central to the pathogenesis of inflammatory bowel disease, guiding immune cell trafficking and chronic inflammation, presenting viable therapeutic targets. Finally, these mechanisms are indispensable for effective wound healing, orchestrating cell migration, proliferation, and tissue remodeling, thus offering pathways for enhanced repair and regeneration.

References

1. Xuhui C, Kai Z, Wei P. Cell Adhesion-Mediated Drug Resistance in Cancer:

2. Riccardo R, Patricia DV, Carolin G. The cadherin-catenin complex and cell adhesion in development and disease. *Mech Dev.* 2022;172:103761.
3. Seongmin K, Kyeonggeun K, Youngjun O. Cell Adhesion Molecules in the Neuromuscular Junction: *Role in Health and Disease.* *Int J Mol Sci.* 2023;24:12056.
4. Maria V, Elena DZ, Francesca DF. Cell Adhesion and Migration in Endometriosis: *A Comprehensive Review.* *J Clin Med.* 2023;12:4867.
5. Tim H, Thomas H, Simon S. *Cell Adhesion Molecules in Cancer Immunology.* *Cancers (Basel).* 2022;14:3426.
6. Cong Y, Ran T, Yuan C. Mechanotransduction in cell adhesion: role of YAP/TAZ. *Cell Biosci.* 2021;11:176.
7. Paola N, Natalie B, Jacalyn V. Targeting cell adhesion in multiple myeloma: a therapeutic overview. *Blood.* 2020;136:2390-2401.
8. Wei C, Hong S, Yu L. Cell adhesion in stem cell niche: from basic mechanisms to disease implications. *J Hematol Oncol.* 2021;14:109.
9. Guangyu Z, Jie Z, Yanyan L. *The Role of Cell Adhesion Molecules in the Pathogenesis of Inflammatory Bowel Disease.* *Front Immunol.* 2021;12:685810.
10. Qin L, Shaohua C, Haibo W. Cell adhesion in wound healing: *Mechanisms and therapeutic implications.* *Cell Adh Migr.* 2019;13:419-436.