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             ABSTRACT

Bio Inspired computation is the part of Artificial intelligence which was inspired by the biological behaviors of biological 
systems. Swarm intelligence is the collective behavior of an organized group in day-to-day life. Common examples of swarm 
intelligence include ant colony, bee colony, etc. and some are non-swarm intelligence like bat algorithm, etc. This study 
mainly focuses on application areas of various bio inspired computing based swarm and non-swarm intelligence. This 
review also discusses the newly developed algorithms. Specific application areas of such algorithms have been discussed in 
this research.  This research highlighted the future scope of present algorithms.
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  1. INTRODUCTION
n Artificial Intelligence swarm intelligence or Bio- 
inspired computation is categorized as a subset. It is 
classified as fast growing area which was introduced 

by Gerado Beni and Jing Wang in 1989 in the area of 
robotic systems. Swarm Intelligence or Bio- Inspired 
computing can be described as the collective behavior of 
species available in Nature. Species like social insects as 
ants, bees and termites are executing the basic rules. The 
key approach to implement Bio- Inspired computation is 
problem - solving using nature inspired algorithms. Bio- 
Inspired computing techniques are adaptable, evolvable, 
redundant, extendable and innovative. In Bio- Inspired 
computation the swarm can adjust or self- organize 
according to the dynamic constraints. Swatting the assets' 
is a phrase used in many industries and organizations 
which aim to get as possible values from the existing 
values.  A famous Aristotle quote in support is, ' The 
whole is more than the sum of the parts'. Every living thing 
in nature tries to survive according to the natural habitat. 
Optimal foraging policy is one such phenomenon learned 
from the living things. By nature all the living things are 
stochastic behavior. Optimizing the complex values is not 
an ordinary task. To do this so many algorithms were pro- 
posed by some authors. In this research, we are adopting 
nature-inspired algorithms for optimizing the best results. 
Nature inspired algorithms are categorized into two 

categories like swarm based and non- swarm based. When 
we are discussing about the swarm based algorithms like 
ant colony optimization, Bee colony, Firefly, glowworm, 
Lion, Monkey, Bat, Wolf etc.

2. RESEARCH METHODOLOGY
The research was conducted in multiple stages. Initially, 
some important algorithms are analyzed. Researchers have 
concentrated on those algorithms, which are not in popular, 
and needs for development.  These algorithms were 
identified through some popular search engines like 
Google scholar using some keywords like swarm 
intelligence and non-swam intelligence, also studied from 
some well-known conference publications, proceedings 
and book chapters, etc.  After collecting, the similar 
articles relating to the bio inspired computing the next 
stage is a literature review conducted in detail for each 
analyzed algorithm. Considering the methodology 
discussed above, we have identified major algorithms 
(Thirteen in number) which can be categorized into insect 
based, animal based and bird based algorithms that was 
shown in the figure under. Swarm based algorithms are 
collective in nature, such as ant colony, bee colony,  glow 
worm, and firefly algorithms and animal based algorithms 
like Wolf, lion, monkey, bat and bird based algorithms like 
cuckoo search and flocks of birds etc. 
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have been discussed  for their capacity and applications 
were conducted.  Figure 1 shows the hierarchy of bio 

inspired computing algorithms for this study.

Figure 1. shows the hierarchy of Swarm intelligence

3. INSECT BASED OPTIMIZATION
3.1. Ant colony optimization
A. Basic Overview
Ant colony optimization algorithm  was proposed by 
Colomi (1) and was based on the behavior of ants while 
searching food for themselves. Food searching is one task 
and optimizing the food is another task for ants. In order to 
communicate with each other during the food searching 
process, the ants use a chemical substance, i.e., the 
pheromone trail. 

B. Application areas of Ant Colony Optimization
Application areas of ant colony optimization is Data 
mining, (2-4) clustering and classification by the ant 
colony (5-8). Artificial ant colony optimization is also 
involved to solve travelling salesman problem (9-13). The 
ant colony optimization is also participating in vehicular 
routing problems (14-16) along with this application areas 
the ant colony optimization is actively participated to solve 
job scheduling sequence (17-19) time table arrangement 
(19) telecommunication networking systems (20, 21) 
congestion control for MIMO detection (22), ant colony 
optimization extends in data composition by c means, 
economic dispatch problem, gaming theory (23, 24) social 
media approaches (24, 25) satellite control (25) etc.,

3.2. Artificial bee colony
A. Basic Overview
Artificial bee colony algorithms was proposed by 
Karaboga in 2005 (26) based on the foraging behavior of 
Honey bees. In this algorithm the behavior of honeybees 
were discussed with respect to their communication for 
nest site selection, mating, dance  pheromone laying etc., 

based on which the algorithm was modified.  The Artificial 
bee colony (ABC) algorithms optimize the results by 
conducting various iterations with the available alternate 
solutions to solve complex problems. In an Artificial bee 
colony, there are three types of honeybees: Employed bees, 
onlooker bees, and scout bees. An employed bee searches 
the food sources and informs to the onlooker bees. In the 
second stage, the onlooker bee verifies the results, i.e., 
food sources and selects the best food sources based on 
highest quality (fitness). The scout bees are translated from 
a few employed bees which abandon the food sources and 
search new ones. The employed bees always search the 
food sources and update their database with the new values 
for the onlooker bees and the onlooker bees make a 
decision for the best food source with the help of higher 
fitness function.  In this case, if the bees are not getting 
good results, then the results are rejected or discarded and 
better results are re-searched. 

B. Applications areas of Ant Colony Optimization
Application areas of the Artificial bee colony is  involved 
in various problem solving approaches such single 
objective numerical value optimizer, cluster approach in 
global optimization (26), (27-29). The abc has been also 
utilized for the (30, 31) and for cluster approach in (31) 
global optimization (32) participated in (33), (34) the abc 
is also participated for (35) and participated in various 
raking problems in wireless sensor networks further it can 
be witnessed for multi-dimensional problems for both 
single and multi-objective problems evaluation and 
differential evolution problems.

Swarm Based 
Algorithms

Insect Based 
Algorithms

          Animal Based 
Algorithms

             Bird Based 
Algorithms
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3.3. Firefly
A. Basic Overview
Firefly algorithm was proposed by (36) based on the 
behavior of fireflies. Firefly algorithm is a metaheuristic 
algorithm which gives better results comparative than the 
other swarm based algorithms. This algorithm works with 
the behavior of fireflies, how they are attracting for finding 
mates, finding prey or only for mutual communication with 
the help of bioluminescence or flashing signals. In this 
algorithm all, the fireflies are unisex only. The attractive 
rate is calculated by the brightness how much they are 
emitting. According to the problem requirement, we are 
selecting fireflies randomly in the first step.  After this step, 
the results are verified by the fitness function defined for 
the each firefly selected randomly. The iteration continues 
until to find similar fireflies relating to the problem domain.  
During this process, the number of iterations is predefined.  
One of the major advantages of this firefly algorithm is 
conjunction with other algorithms to obtain the best 
outcome.  

B. Applications areas of Fire fly Optimization
Application areas of this algorithm are for (37) and (38, 
39), for mixed variable optimization(39) and (40, 41). The 
firefly algorithm can also participated in (42-44) (45), the 
fireflies also participated (46-48). firefly algorithm also 
involved for (49, 50). Apart of all the above firefly 
algorithm (51). Along with this firefly along with cuckoo 
participated for (52).

3.4. Glow warm
A. Basic Overview
Glow warm swam optimization was developed based on 
the behavior of glow warms (53). The glow warms are 
communicating others with the help of chemical substance 
called luciferin emission that helps them flow glow 
emission.  The increasing of emission leads to the good 
results.  As per the artificial glow warm optimization 
initially in a swarm glow warms are selected randomly, 
which they are self-potential. In second step, the glow 
warms are moving towards the high intensive warms and 
calculates the direction based on the objective function 
defined to each glowworm at the current location. In this 
case each glow worm compare its potentiality with the 
other glowworms in the neighborhood and changes the 
traversal direction if the desired results are available or else 
it can continue by its own results. This process is continued 
until the said glowworm reaches its convergence results 
and in this optimization also the iterations are predefined.  

B. Application areas of Glow Worm optimization
Application areas of glow warm optimization includes (54), 
(53),. The glow swarm optimization algorithm involves for 
(55), (56). The glowworm swarm optimization extends the 
participation for (53) also participated in  optimal power 
flow based for three phase is landed micro grids (57).

4. ANIMAL BASED ALGORITHMS
4.1. Bat algorithm
A. Basic Overview
The bat algorithm is a metaheuristic algorithm developed 
based on the echolocation  behavior of bats (58). This 
algorithm that helps to solve single objective and multi- 
objective optimization problems. In this, the bats are 
emitting the echo with different wavelength and loudness 
to attract the prey.  It changes the frequency according the 
search and it was intensified by a random walk.  This 
process will continue until any obstacle found. This 
technique enables bats to evaluate the perfect location of 
any object or prey.  In this, the bats will estimates the 
distance of the prey and adjusting the flight velocities, 
intensity of the cry.  Vector algebra is the mathematical 
tool for calculation of the problem. With single iteration, 
the bat will calculate whether the prey is nearer or not. 
According to that bat will increase the frequency and 
decrease the loudness.  Although the bat algorithm is 
restricted to continuous problems, a binary version of bat 
algorithm was introduced to address discrete decision 
making (59) there are so many studies have conduced 
which involves classical bio- inspired like neural networks 
(59).  

B. Applications areas of BAT Optimization
Application areas of Bat algorithm which includes (60) for 
(61), (62).  Bat algorithm also involves to solve multi- 
objective problems in (63), (64).  Bat algorithm has also 
participated for solving (65)( Bat algorithm based 
scheduling), for solving (66) (Bat algorithm for mutation), 
required computation time will increase when the number 
of multilevel  thresholds are growing (2), for global 
optimization BBA( A binary Bat Algorithm (67) 
introduces for future selection (68).

4.2. Monkey
A. Basic Overview
To solve global numerical optimization problems Monkey 
based algorithm is one of the best algorithm to solve such 
type of problems.  In this algorithm the adoption of 
monkeys behaviors when they are climbing mountains. 
The monkeys algorithm will follow the three processes 
climb process, watch-jump process and somersault to 
achieve the desired results. To find the best value or best 
results on availability data sets if the monkey will reach to 
the top of the mountain it will start the climbing process 
and change the location when the current results are not 
satisfying the desired results and so. If found the best 
results comparative than the previous the monkey will 
apply watch jump process. This iterative process continues 
until the monkey will not reach the desired goal or 
destination. After iterations of climb and watch jump 
process each monkey will find local maxima to its initial 
state. In order to locate a yet higher mountaintop it is 
obvious for each monkey to somersault to a new search 
domain this is called somersault process. After abundant 
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repetitions of climb process, watch-jump process and 
somersault process the monkey is reported an optimal 
solution.

B. Applications areas of Monkey Optimization
Applications areas of (69) for (70), (71). The monkey 
algorithm is also participate with (72), (73, 74), for solving 
numerical optimization problems based on fission- fusion 
behavior of monkeys with spider monkey optimization 
(74), Monkey based algorithm can also (75), clustering the 
popular data analysis in data mining, monkey algorithm 
involves with hybridization for optimal clustering analysis 
(76) for effective structural health monitoring optimal 
sensor placement is the integral component, monkey 
algorithm hybridized with artificial fish swarm intelligence 
(2), for hybrid power systems optimization monkey 
algorithm (77) involves to solve problem. In mathematics 
for real- parameter optimization based on exploration and 
exploitation a modified or improvised monkey algorithm 
(78) involves to solve the problems above mentioned, this 
algorithm involves for optimizing uncertain structural 
systems subject to earth quake ground motions (79).

4.3. Lion based
A. Basic Overview
Lions are most socially wildcat species. Lions are strong 
sexual dimorphisms in both social behavior and 
appurtenance.  In lion based optimized algorithm the initial 
population was formed randomly and categorized in two 
groups named nomads and residents. Residents live in a 
group called Pride. Nomads behave sporadically in 
singular or  in pairs.  According to this algorithm, each lion 
in the population moves towards better placed called 
solution.  In resident group, usually females are hunting in 
randomly and the rest of them are moving according to the 
group.  Any weak Lion found it has to be eliminated and 
this process was done by the strongest lion either killing or 
general death.  The above process is done until the lions 
may not get good results i.e., the destination.

B. Applications areas of LION Optimization
Applications of Lion algorithm are employed (80), (81). 
(82), the ant lion  colony optimization algorithm also finds 
the solution for classical engineering problems (82). The 
ant lion optimization also involves in multi agent 
methodology for integrating the process and scheduling for 
defining guidelines in Global Initiative for Chronic 
Obstructive Lung Disease (83), (84).

4.4. Wolf
A. Basic Overview
It is one of the recent meta heuristic algorithm by Simon 
fong (85). Wolf algorithm is based on the behavior of 
wolfs for hunting. Wolfs are dividing the task and update 
their current locations with the better locations.  If the new 
location is better than the current location then the wolf 
jump to the new location and make its as a current location.  
This process will repeats until all the wolf’s are satisfied 

with the results, i.e., food.  Based on the behavior of wolf 
colony algorithm was designed.  These algorithms are 
more superior than the current bio- inspired algorithms.

B. Applications areas of Wolf Optimization
Applications of the wolf based algorithm is used for 
optimizing the search conditions (86), for un inhabited 
combat air vehicle path planning the wolf colony search 
algorithm has participated (87) wolf colony algorithm also 
involves in fault system estimation problem on power 
systems (88), in optimal operation of hydro power station 
(89), a grey wolf optimizer in multi-layer perceptions (90) 
for effective cheap method for improving the performance 
of metaheuristics. Evolutionary population dynamics and 
grey wolf optimizer (91).

5. BIRD BASED OPTIMIZATION
5.1. Cuckoo search
A. Basic Overview
In 2009 , Yang and Deb proposed cuckoo search algorithm 
inspired by the behavior of cuckoo bird which was a meta 
heuristic approach (36). The algorithm was based on the 
behavior of cuckoo’s breed paratism. Cuckoo search is 
strengthen by levy flights rather than the isotropic.  It is a 
population based algorithm to solve complex non- linear 
problems, brood paratism means it lays eggs in another 
bird nest like crow in India.  Cuckoo generally searches the 
crow’s nest regularly for laying eggs.  For this its searches 
the best nest for laying eggs. After laying the eggs by 
cuckoo the eggs were hatching by the crow. Alien eggs are 
detected by crow then the eggs are thrown away from the 
nest or a bonded.  In cuckoo search optimization, the 
cuckoo will select the nest randomly and calculates the 
best nest according the fitness function or objective 
function according to the problem domain.

B. Applications areas of Cuckoo Seach Optimization
Applications of cuckoo search includes for selecting 
optimal matching parameters in milling operations (92), 
cuckoo search involves in feed forward neural network 
training (93), for structural design optimization of vehicle 
components (94), for solving travelling sales man problem 
(95), the basic cuckoo search algorithm has been modified 
and utilized for unconstrained optimization problems (96), 
for satellite image segmentation in multi-level thresholding 
(97), the cuckoo search algorithm have been improved for 
global optimization (98), the hybridized cuckoo with fuzzy 
for solving multi-objective scheduling problem (99), 
parameter estimation for chaotic systems using cuckoo 
search algorithm (100).

6. FEATURE SCOPE OF BIO INSPIRED 
ALGORITHMS
Tremendous research has been conducted and so many 
application areas proposed in this preset review article with 
adequacy of references. Mainly the algorithms are ant 
colony, bee colony and firefly algorithm from the insect 
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based category, bat based from the animal category of Bio-
inspired computing. We also reviewed the current 
algorithms like lion, wolf and glow warm etc., these 
algorithms are not much more utilized in application areas 
comparative than the previously discussed algorithms, 
because they are newer. Further, this research also focused 
on bird based algorithms like cuckoo and its application 
areas. Future research will concentrate on the above 
algorithms that are not popular or newer.  Further, the 
feature also concentrates on the outcome of the available 
algorithms to fulfill the domain requirements. Future 
research can also emphasis for hybridization of the above 
algorithms with genetic algorithm, neural networks etc.,

7. CONCLUSION
This study gives the detailed review about the bio inspired 
computing based algorithms which include Insect Based, 
Animal Based and Bird based algorithms.  It is clear that in 
this study, some of the few algorithms like an ant colony, 
Artificial Bee colony, Bat, Lion and Cuckoo optimization 
algorithms are very famous and well having plenty of 
publications  participated in so many application areas.  
These algorithms have been participating in so many 
engineering domains like automobile engineering, 
mechanical engineering, electrical engineering, etc. In this 
review, the authors also reported the less popular 
algorithms like glow warm, lion and wolf etc.
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